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Mapping class groups and power subgroups

Let M(g, p) be the mapping class group of an oriented connected compact
surface X2 of genus g with p punctures.

B Remark Let ¢ be a simple closed curve (SCC).
tc a Dehn twist along c,
o a half twist exchanging the i-th and i 4 1-th marked points.

We consider “power subgroups” of M(g, p). Examples of power subgroups are
the following.

Let ¢ be a non-separating simple closed curve (SCC) on X2 and m € Zx,.
Nw(g,p) the normal closure of tI" in M(g, p),

J\Ns"m(g, p) the normal closure of m-th powers of all Dehn twists in
M(g,p).

Nm(g.p) the normal closure of {o/" | i =1,2,...p— 1} in M(g, p).

Is the indices of a power subgroup FINITE or INFINITE? I
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Power subgroups of mapping class groups

Indices of power subgroups

» In the case of Ny, N C M(g,0):

B Theorem (Newman 1972) [M(I,O);Nm] = o0 if m > 6, and finite if
m < 6.

B Theorem (Humphries 1992) [M(2,0);./\7m] = oo if m > 4, and finite i
m < 4.

B Theorem (Funar 1999) [M(g,0); Nm] = co if g > 3 and
m¢{1,2,3,4,6,8,12}.
» In the case of N,, C M(0,2n):
B Theorem (Stylianakis 2018) [M(0,2n); Nm] = oo if 2n > 6 and m > 5.
® Stylianakis used the Jones representation at root of unity.
B Theorem (Masbaum 2018) [M(0,2n); Nm] = oo if 2n > 4 and m > 6.

® Masbaum used the quantum representation obtained from the Kauffman
bracket skein module.
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Main results

Masbaum’s comments

“| believe that the remaining case (2n > 6, m = 5) can also be proved by using
the skein theory and the proof requires some mathematical software.”

Theorem (Y.)
[M(0,2n); Nl = 00 if 2n > 6 and m =5, m > 7. The proof used the skein
theory and hand calcululation.

Let Az be the hyperelliptic mapping class group of Zg equipped with a
hyperelliptic involution ¢. We define power subgroups of A, as follows:

N, the normal closure of the m-th power of a Dehn twist along
symmetric non-separating SCC,

N the normal subgroup of m-th powers of Dehn twists along all
symmetric SCCs.

Corollary (Y.) [Ag;/\"/,;] —ooifg>2and m> 4.

B Remark Stylianakis showed [Ag; N,] = 0o if g > 2 and m > 4 as a corollary
of his theorem.
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The Kauffman bracket skein relation

Let us describe a part of framed tangle in an oriented 3-manifold M as a tangle
diagram in a disk. The framing is given by a blackboard framing.

Bl Definition (The Kauffman bracket skein relation)

Let g be an invertible elements in C. The Kauffman bracket skein relations
is relations in the C-vector space spanned by framed tangles in M defined as

Q0O

e LU @ = —[2]L, for any tangle L.

The definition of the quantum integer [n] is

N
N

q

[ = (af —a %)/(q? —q?)
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The Kauffman bracket skein module

The Kauffman bracket skein modules

Let ([0,1]*,2n) be the 3-ball with 2n marked points on the top side. The
Kauffman bracket skein module of ([0, 1]*,2n) is

S4(1%%") = spanc{tangles in ([0,1]*,2n)}/the Kauffman bracket skein relations.

There is a natural Hermitian form (- | -): Sq(1%%7) x S4(1%%") — C defined by
gluing two ([0, 1]*,2n)’s together at top sides. The latter cube takes the mirror

(ETIE=-| (D=

We consider the quatient vector space S,(19%") of Sq(1%2") which makes
(-] +) non-degenerate.
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Bases of S,(1%2")

111 In the follwoing, we take g as a primitive r-th root of unity !!!

A basis of Sq(1%") is given by uni-trivalent graph with admissible colorings.
B Definition (r-admissible coloring)
Let T be a uni-trivalent graph whose edges are labelled by non-negative
integers (we call them colors). A triple of colors (a, b, c) on edges adjacent
to a trivalent vertex v is r-admissible if

® 3+ b+ cis even,

® a+b—c, b+ c—a, c+ a— b are non-negative,

® 0<abc<r—2anda+b+c<2(r—2).
An r-admissible coloring on T is a colorings whose triples of colors are
r-admissible for any trivalent vertices.

A basis of Sq(1%") is given by the set of r-admissible colorings on an
uni-trivalent graph in a disk with 2n marked points. The graph is considered as
an embedded graph in the vertical plane {1/2} x [0,1]* C ([0, 1]%, 2n).
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The Kauffman bracket skein module

Bases of S,(1%2")

B Theorem (Lickorish 1997 etc.)

Fix an embedding of uni-trivalent graph T into the disk with 2n marked

points. Then, the basis of S;(1%2") is obtained by the set of r-admissible
colorings on T as the following example.

The trivalent graph T with r-admissible colorings (a1, az, . . ., a2n—3) gives a
basis of S;(1%2")

a=1 1 1 1 1 1 1 1 1=92n—-2

Br(a1, az,...,am-3) = L J

ay a a3 ap-3

b b

(= . .
where } represents a skein element -, and white boxes
a a

represent “Jones-Wenz| projectors”.
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Coodinate changes and 6;-symbol

Let T and T’ are embedded uni-trivalent graphs in the disk with 2n marked

points. Then, one can deform T into T’ by a sequence of “flips”.
For example, the underlying uni-trivalent graph T and T’ of

a=1111111 1 17%2n-2

ﬁr(ahaz, .. .,az,,,g,) :[ LU—U—I u_j ]

ay ap a3 a4 a3

and
2=11111111 1=322

ﬁr/(a1,az,...,azn_3):[w I_U] )

a2 a3 ag ap-3

are related by a flip on an edge (colored with a1).
A flip of uni-trivalent graph at some edge induce a coodinate change of
Sq(1%2M).
We denote these orderd bases by
* Br ={pB7(a1,a,...,an-3) | r-admissible },
® By ={pr/(a1,a,...,an_3) | r-admissible }.
The order is the lexicographic order of colors (a1, a2, . .., an—3).
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Coodinate changes and 6;-symbol

B Remark The r-admissibility requires the following conditions:

Type | (a1, a,..
Type Il (a1, a2, ..
Type Il (a1, a2, ..

Bt transforms into B/ by 6j-symbols,

1 0

Br(0,1,a3,..., ap_3) = {1 1 0} Byr(0,1,a3, ...,
1 1 2

Br(2,1,a3,..., ap_3) = {1 1 2} Brr(2,1,a3, ...,
1 1 2

BT(2,3, a3, yap_3) = {1 3 2} Brr(2,3,a3, ...,

The value of the above 6j-symbols are the following:
11 0] _ 1 11 2]
1 0 __@7 1 1 of ™
ol _ B 11 0] _,
2 _E’ 1 1 of  —
—[217 &

is Ik
)

—
[Ery—
[

Consequently, the coodinate change matrix

[N

., an—3) such that a1 =0 and a; = 1,
., a2p—3) such that a1 =2 and a; = 1,

., ap—3) such that a3 =2 and a; = 3.

(3] [2] 2 I
[2]7" I
O

I
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Braid groups and Mapping class groups of punctured spheres

B Definition (Braid groups)

The braid group of k strands has a presentation

B, = <01,02,...,Uk_1

0i0iy10; = ojp10i0ip1 (1 <i<k— 1)>

0i0j = 00| (‘I—_j| > 1)

The generator o; represents the following braid diagram:

The composition of two braid diagrams ab is given by gluing b on the top of
a.

fori=1,2,... k—1.

We construct a quantum representation of the mapping class group of
punctured sphere M(0,2n) from an action of Ba, on Sy(1%%7).

The action of o € Ba, on Sq(1%27) is defined by gluing o~ on the top of
([0, 1%, 2n).
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Quantum representations of M (0, 2n)

The action of By, on Sq(1%2")

The action j of B, on the clasped web spaces S;(1%%") is defined as follows.

Sq,(1%%) 3 [
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Quantum represenatations of M(0,2n)

We construct a quantum representation of M(0, 2n) from p. It is well-known
that M(0, 2n) is a quotient of Bz, by two relators:

Ri =0102...020-102n-102n—-2 ... 01
R, = (o102 .. Ugn,1)2"
One can obtain j(R1) = (R:) = Id in PGL(S4(1%?")) by easy calculations.

Thus, the projectivization of j: Ba, — GL(S4(1%%")) factors through
p: M(0,2n) — PGL(S4(1%%")).

Bay ———— GL(S4(15%"))

/R1,R2 projectivization

M(0,2n) —L— peL(s,(127))
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Strategy for proving inifiniteness of the index of a power subgroup

Masbaum's strategy

For given power m, find a primitive r-th root of unity g and f € M(0,2n) such
that

© p(o7") = Id,
@ p(f) has inifinite order in PGL(S,(1%%")).

B Remark o, is conjugate to o; forany i =1,2,...,2n— 1.
For any embedded uni-trivalent graph T in ([0,1],2n), pr denotes the matrix
representation of p with respect to the ordered basis Br.

» Strategy 1 (easy) Computing p(c{") by using the basis Bt and a twist formula

. b a=bec  _1(a0342)—b(b+2)—c(c+2)) @ 5
[ = (T it

= p(aT)(BT(0, a1, ., 320-3)) = (—1)"q ¥ Br(0, a1, .., 320-3),
p(ain)(ﬁT(za aly ...y 32n73)) = qi%ﬁT(za aly ...y 32,773).
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Infiniteness of the index of a power subgroup of A (0, 2n)

Strategy for proving inifiniteness of the index of a power subgroup

Masbaum's strategy

For given power m, find a primitive r-th root of unity g and f € M(0,2n) such
that

® p(o") = Id,
@ p(f) has inifinite order in PGL(S,(1%°")).

Solution for strategy 1

® If mis even, then g is a m-th root of unity,

® If mis odd, then g is a 2m-th root of unity.

\

» Strategy 2 Suppose p(f)" = Id in PGL(S,(1%2")), then the lift o € By, of f
satisfies 5(o™) = Ald in GL(S4(1%2")) for some A € C. This condition implies

[trace(5(c))]| < rank(5(c))

B Find o € By, satisfying |trace(p(c))| > rank(p(c)) - - - ().

S
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Infiniteness of the index of a power subgroup of A (0, 2n)

Review of Masbaum'’s calculation for the remaining case (m = 5)

Masbaum compute j7(c) where o = 07052 € By,. One can compute

A+@BDRIT W (~1+ ) B[ & %
pr(0) = (1—q_;)[2]71 Ik (1+(—1)5q;[3])[2]72/k 0

2

1
tr(pr(0)) = f(q)k + k' where f(q) = (q2 + q_z) _ <q> )
Set g = exp(if), the condition (¢) is satistied when

27 /3

2 4
§<9<7T,7T<0<§.7r

47 /3

In the case of m = 5, the strategy 1 requires g of a primitive 10-th root of

unity. However, 0 = T, 3m Im 97 ...e do not satisfy the condition.

57505
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Infiniteness of the index of a power subgroup of A (0, 2n)

Review of Masbaum'’s calculation for the remaining case (m = 5)

Masbaum compute j7(c) where o = 07052 € Ba,. One can compute

Q+@BNR T ((1+ BRIk O
pri)=| A—a 2 "k QL+ (1 2Bk O
0] 0]

2
-1
tr(pr(0)) = F(q)k + k' where f(q) = (¢ + q7%) — (") .
Set g = exp(if), the condition (&) is satistied when
27 /3

2 4
?ﬂ<9<7r,7r<9<?7r.7r

47 /3

In the case of m = 5, the strategy 1 requires g of a primitive 10-th root of

unity. However, § = £, 3% I= 9T ...4 do not satisfy the condition.
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Infiniteness of the index of a power subgroup of A (0, 2n)

Our calculation for the remaining case (m = 5)

We compute g1(o) where
o= (0102...0n-1)"0n(0102. .. 0n71)7n0;1 € B,

To calculate gr(o), we use the ordered basis Bt and new basis By whose
elements are

=1 1 1 1 1 1 1 1 1 1 1%-2

By (a1, az,...,am-3) = L j/a"_l.” J

ar a2 an—2 @n a2n-3

One can compute jr(0) as follows:
(Br % By) = py(o7) = (By % Br) = pr((c102...00-1)"")
— (Br % By) = py(0a) = (By % Br) = pr((0102...00-1)")

We use the twist formula for gy (o,) and pr((o102...0n,—1)") makes a curl on
a edge of T colored with a,_1.
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Infiniteness of the index of a power subgroup of A (0, 2n)

Our calculation for the remaining case (m = 5)

We compute pr(0o) for odd n > 3, and for even n > 4. We only see the case of
odd n > 3.
The direct computation of the matrix representation M = jr (o) gives

ke lhge ML) eM3)D .- M(r—4) if ris odd,
by @ I,y ®MQA)BM@B)D - ® M(r —5)® l,,—3) if ris even,

[a+2]1 [2][a+2]

T AT LR o e S T (1- 0= m ol 2SI ) ), )

oy — |: (1 -1 - fa(q)fa+2(q_3))%ﬁ) Ilz(a) a- fa(Q)fa+2(q_1))( q2 la+1]+q 2 [a+3])[a+1][a+3], )l ’
(
+1 2
— 2 1)? -2
and £(0) = (1)°(q" +q7%) + (-1 (22
Thus,

q2+q 2

w(M(@) = (2 2 Fla)fala™) - fa(q*)mz(q))%) b(2)

=2h(a)+ (a7 —q 2)(@7 —q %)k(a)
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Our calculation for the remaining case (m = 5)

The condition (&) is (q%1 - qf%l)(q# - qfa#) > 0. Then, the angle of
q = exp(if) is
/2
g<9<7r,7r<9<37ﬂ—.7r
3mw/2

In fact, 10-th roots of unity g = exp(37/5), exp(77/5) satisfy this condition.
Such direct computations of j(co) show the following:

Theorem (Y.)
For any 2n > 6, m > 5 and m # 6, Ny, has infinite index in M(0, 2n).
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Infiniteness of the index of a power subgroup of A (0, 2n)

Power subgroups of hyperelliptic mapping class groups

Let X, = Zg is an oriented closed surface of genus g equipped with a
hyperelliptic involution ¢: g — 3.
The hyperelliptic mapping class group Ag is the centralizer of the isotopy class
of ¢ in M(g,0).

Ay ={f € M(g,0) | fuv=f}

B Remark For a SCC awon X, to € Ag if t(a) = a.
The follwong theorem relates A, to M(0,2g + 2):

B Theorem (Birman-Hilden 1973) A, /(:) & M(0,2g + 2).

L=l =i S —
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Infiniteness of the index of a power subgroup of A (0, 2n)

Power subgroups of hyperelliptic mapping class groups

A quantum representaiton
p't Dg — PGL(S4(1%%7?%))

is defined as a composition of the surjective homomorphism
Ag — M(0,2g +2) and p: M(0,2g + 2) — PGL(S,(19%672)).

We study a power sugbroup N ,y of A, through p': Ag — PGL(S,(19%%?)).

Ni,ey = the normal closure of {tk, tfh |h=1,2,...g—1}in A,

genus h subsurface
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Infiniteness of the index of a power subgroup of A (0, 2n)

We use the same strategy to Masbaum’s one:

Strategy for A,

For given powers k, ¢, find a primitive r-th root of unity g and f € A,z such
that

® o/ (t5) =1d, and p'(tgh) =Id forany h=1,2,...,g — 1,
@ p/(f) has inifinite order in PGL(S4(1%2")).

B Remark
| The projection of t. € Ag on M(0,2g +2) is o1, and ts, is (7102 . .. o2n)*" 2

We only have to calculate p'(ts,) and and solve the strategy 1.
Proposition (Y.)

Let g be a primitive r-th root of unity and p: Ay — Sq(1%%72) the
projective representation. Then,

® p(ts5,) =Id for any g > 2 and 1 < h < |g/2] when r = 4,

® p(t5,) =1dif ¢® =1forany g >2and 1 < h < |g/2] when r =5,86,
(3 p(tgl) =1Id if ¢® =1 for g = 2,3 when r > 7.
(4) p(tfh) =Idifg** =1forany g >4and 1< h< |g/2] when r>7.
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Infiniteness of the index of a power subgroup of A (0, 2n)

We use a lift of 0 = (0102...00-1)"0n(0102 ... 0n—1) "0, " as f in the
strategy 2. The computation of p'(f) is similar to p(c), and we already
computeted the matrix.

Consequently, we obtain the follwoing:

Theorem (Y.)
0 g=2,3m2>1, Ngmisomi1) ad Nmio2mi3) have infinite indices in
A,.
®g=2,3m2>2 Ngp m and N6 me1) have infinite indices in Ag.
© g >4 m>2 Npopm and Ny i1 omery have infinite indices in Ag.

Corollary (Y.) [Ag;/(f,;] —coifg>2and m> 4.

N = ./\/'(Lmym) and the third case show the corollary.
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