On power subgroups of Dehn twists in hyperelliptic mapping class groups

Wataru Yuasa

Department of Mathematics, Kyoto University This work was supported by KAKENHI(15H05739)

October 29, 2018

- \bullet Power subgroups of mapping class groups
- ² Main results
- **3** The Kauffman bracket skein module
- ⁴ Quantum representations of *M*(0*,* 2*n*)
- **6** Infiniteness of the index of a power subgroup of $M(0, 2n)$

s of mapping class groups Mapping class groups and power subgroups

Let $\mathcal{M}(g, p)$ be the mapping class group of an oriented connected compact

surface \sum_{g}^{p} of genus *g* with *p* punctures.

■ **Remark** Let *c* be a simple closed curve (SCC).

t^c a Dehn twist along *c*,

σⁱ a half twist exchanging the *i*-th and *i* + 1-th marked points.

We consider "power subgroups" of $\mathcal{M}(g, p)$. Examples of power subgroups are the following.

Let *c* be a non-separating simple closed curve (SCC) on Σ_g^{ρ} and $m \in \mathbb{Z}_{\geq 0}$.

- $\mathcal{N}_m(g, p)$ the normal closure of t_c^m in $\mathcal{M}(g, p)$,
- $\tilde{\mathcal{N}}_m(g, p)$ the normal closure of *m*-th powers of all Dehn twists in $\mathcal{M}(g, p)$,
- *N*_{*m*}(*g, p*) the normal closure of $\{\sigma_i^m \mid i = 1, 2, \ldots, p-1\}$ in $\mathcal{M}(g, p)$.

Question

Is the indices of a power subgroup FINITE or INFINITE?

Power subgroups of mapping class groups Indices of power subgroups

- ▶ In the case of \mathcal{N}_m , $\tilde{\mathcal{N}}_m$ ⊂ $\mathcal{M}(g, 0)$:
	- \blacksquare **Theorem (Newman 1972)** $\big[\mathcal{M}(1,0);\tilde{\mathcal{N}}_m\big]=\infty$ if $m\geq 6,$ and finite if *m <* 6.
	- Theorem (Humphries 1992) $\left[\mathcal{M}(2,0);\tilde{\mathcal{N}}_m\right]=\infty$ if $m\geq 4$, and finite if $m < 4$.
	- **Theorem (Funar 1999)** $\left[\mathcal{M}(g,0);\mathcal{N}_m\right] = \infty$ if $g \geq 3$ and *m ̸∈ {*1*,* 2*,* 3*,* 4*,* 6*,* 8*,* 12*}*.
- ▶ In the case of N_m \subset $\mathcal{M}(0, 2n)$:
	- **Theorem (Stylianakis 2018)** $[M(0, 2n); N_m] = ∞$ if $2n \ge 6$ and $m \ge 5$.
		- *•* Stylianakis used the Jones representation at root of unity.
	- **Theorem (Masbaum 2018)** $[M(0, 2n); N_m] = ∞$ if $2n \ge 4$ and $m \ge 6$.
		- *•* Masbaum used the quantum representation obtained from the Kauffman bracket skein module.

Main results

Masbaum's comments

"I believe that the remaining case ($2n \ge 6$, $m = 5$) can also be proved by using the skein theory and the proof requires some mathematical software."

Main results

■ **Theorem** (Y.)

 $[\mathcal{M}(0, 2n); N_m] = \infty$ if $2n \ge 6$ and $m = 5$, $m \ge 7$. The proof used the skein theory and hand calcululation.

Let $\Delta_{\mathcal{g}}$ be the hyperelliptic mapping class group of $\Sigma_{\mathcal{g}}^0$ equipped with a hyperelliptic involution *ι*. We define power subgroups of ∆*^g* as follows:

- \mathcal{N}^{ι}_{m} the normal closure of the *m*-th power of a Dehn twist along symmetric non-separating SCC,
- $\tilde{\cal N}^{\iota}_{m}$ the normal subgroup of *m*-th powers of Dehn twists along all symmetric SCCs.

Corollary (Y.)
$$
\left[\Delta_g; \tilde{\mathcal{N}}_m^{\iota}\right] = \infty
$$
 if $g \ge 2$ and $m \ge 4$.

■ **Remark** Stylianakis showed [∆*^g* ; *N ι ^m*] = *∞* if *g ≥* 2 and *m ≥* 4 as a corollary of his theorem.

The Kauffman bracket skein module The Kauffman bracket skein relation

Let us describe a part of framed tangle in an oriented 3-manifold *M* as a tangle diagram in a disk. The framing is given by a blackboard framing.

■ **Definition (The Kauffman bracket skein relation)**

Let *q* be an invertible elements in $\mathbb C$. The Kauffman bracket skein relations is relations in the C-vector space spanned by framed tangles in *M* defined as follows:

•
$$
\bigcirc
$$
 $= q^{\frac{1}{4}} \bigcirc$ $+ q^{-\frac{1}{4}} \bigcirc$ \bigcirc $.$
• $L \sqcup \bigcirc$ $= -[2] L$, for any tangle L.

The definition of the quantum integer [*n*] is

$$
[n]=(q^{\frac{n}{2}}-q^{-\frac{n}{2}})/(q^{\frac{1}{2}}-q^{-\frac{1}{2}})
$$

The Kauffman bracket skein module

Let $([0,1]^3, 2n)$ be the 3-ball with 2*n* marked points on the top side. The Kauffman bracket skein module of $([0, 1]^3, 2n)$ is

 $\mathsf{S}_q(1^{\otimes 2n}) = \mathsf{span}_{\mathbb{C}}\{\mathsf{tangles in}\ ([0,1]^3\,,2n)\}/\mathsf{the\ Kauffman\ bracket\ skein\ relation\}.$

 \top here is a natural Hermitian form $\langle\,\cdot\mid\cdot\,\rangle\colon \mathsf{S}_q(1^{\otimes 2n})\times \mathsf{S}_q(1^{\otimes 2n})\to \mathbb{C}$ defined by gluing two $([0, 1]^3, 2n)$'s together at top sides. The latter cube takes the mirror image.

We consider the quatient vector space *Sq*(1*⊗*2*ⁿ*) of S*q*(1*⊗*2*ⁿ*) which makes *⟨ · | · ⟩* non-degenerate.

Bases of $\mathcal{S}_q(1^{\otimes 2n})$

!!! In the follwoing, we take *q* **as a primitive** *r***-th root of unity !!!**

A basis of $\mathcal{S}_q(1^{\otimes 2n})$ is given by uni-trivalent graph with admissible colorings. ■ **Definition** (*r*-admissible coloring)

Let *T* be a uni-trivalent graph whose edges are labelled by non-negative integers (we call them colors). A triple of colors (*a, b, c*) on edges adjacent to a trivalent vertex *v* is *r*-admissible if

- $a + b + c$ is even,
- *• a* + *b − c*, *b* + *c − a*, *c* + *a − b* are non-negative,
- **•** $0 \le a, b, c \le r 2$ and $a + b + c \le 2(r 2)$.

An *r*-admissible coloring on *T* is a colorings whose triples of colors are *r*-admissible for any trivalent vertices.

A basis of $\mathcal{S}_q(1^{\otimes 2n})$ is given by the set of *r*-admissible colorings on an uni-trivalent graph in a disk with 2*n* marked points. The graph is considered as an embedded graph in the vertical plane $\{1/2\}\times [0,1]^2\subset ([0,1]^3,2n).$

Bases of $\mathcal{S}_q(1^{\otimes 2n})$

■ **Theorem (Lickorish 1997 etc.)**

Fix an embedding of uni-trivalent graph *T* into the disk with 2*n* marked points. Then, the basis of $\mathcal{S}_q(1^{\otimes 2n})$ is obtained by the set of *r*-admissible colorings on *T* as the following example.

The trivalent graph *T* with *r*-admissible colorings (*a*1*, a*2*, . . . , a*2*n−*³) gives a basis of $S_q(1^{\otimes 2n})$

Coodinate changes and 6*j*-symbol

Let T and T' are embedded uni-trivalent graphs in the disk with 2*n* marked points. Then, one can deform T into T' by a sequence of "flips". For example, the underlying uni-trivalent graph *T* and *T ′* of

*^a*0⁼ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ⁼*a*2*n−*² *a*1 *a*2 *a*3 *a*4 *··· ^a*2*n−*³ *β^T* (*a*1*, a*2*, . . . , a*2*n−*³) =

and

*^a*0⁼ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ⁼*a*2*n−*² *a*1 *a*2 *a*3 *a*4 *··· ^a*2*n−*³ *β^T′* (*a*1*, a*2*, . . . , a*2*n−*³) =

are related by a flip on an edge (colored with *a*1).

A flip of uni-trivalent graph at some edge induce a coodinate change of $S_q(1^{\otimes 2n})$.

We denote these orderd bases by

- *•* $B_T = \{ \beta_T(a_1, a_2, \ldots, a_{2n-3}) | r \text{-admissible} \},$
- *•* $B_{T'} = \{ \beta_{T'}(a_1, a_2, \dots, a_{2n-3}) | r$ -admissible $\}.$

The order is the lexicographic order of colors $(a_1, a_2, \ldots, a_{2n-3})$.

,

Coodinate changes and 6*j*-symbol

■ **Remark** The *r*-admissibility requires the following conditions:

Type I ($a_1, a_2, \ldots, a_{2n-3}$) such that $a_1 = 0$ and $a_2 = 1$, Type II $(a_1, a_2, \ldots, a_{2n-3})$ such that $a_1 = 2$ and $a_2 = 1$, Type III $(a_1, a_2, \ldots, a_{2n-3})$ such that $a_1 = 2$ and $a_2 = 3$.

B^{*T*} transforms into *B*^{T}^{*'*} by 6*j*-symbols,

 $\beta_{\mathcal{T}}(0,1,a_3,\ldots,a_{2n-3}) = \begin{Bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{Bmatrix} \beta_{\mathcal{T}'}(0,1,a_3,\ldots,a_{2n-3}) + \begin{Bmatrix} 1 & 1 & 2 \\ 1 & 1 & 0 \end{Bmatrix} \beta_{\mathcal{T}'}(2,0,a_3,\ldots,a_{2n-3})$ $\beta_{\mathcal{T}}(2,1,a_3,\ldots,a_{2n-3}) = \begin{Bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \end{Bmatrix} \beta_{\mathcal{T}'}(2,1,a_3,\ldots,a_{2n-3}) + \begin{Bmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \end{Bmatrix} \beta_{\mathcal{T}'}(0,1,a_3,\ldots,a_{2n-3})$ β *T*(2, 3, *a*₃, . . . , *a*_{2*n*}*-*3) = $\begin{cases} 1 & 1 & 2 \\ 1 & 3 & 2 \end{cases}$ β *T*^{*′*} (2, 3, *a*₃, . . . , *a*_{2*n*}*-*3).

The value of the above 6*j*-symbols are the following: 14

 \sim

$$
\begin{Bmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \end{Bmatrix} = -\frac{1}{[2]}, \quad \begin{Bmatrix} 1 & 1 & 2 \ 1 & 1 & 0 \end{Bmatrix} = 1, \quad \begin{Bmatrix} 1 & 1 & 2 \ 1 & 1 & 2 \end{Bmatrix} = \frac{1}{[2]},
$$

\n
$$
\begin{Bmatrix} 1 & 1 & 0 \ 1 & 1 & 2 \end{Bmatrix} = \frac{[3]}{[2]^2}, \quad \begin{Bmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \end{Bmatrix} = 1.
$$

\nConsequently, the coordinate change matrix is
$$
\begin{bmatrix} -[2]^{-1} I_k & [3][2]^{-2} I_k & O \\ I_k & [2]^{-1} I_k & O \\ O & O & I_{k'} \end{bmatrix}
$$

T $\vert \cdot$

$\int \mathcal{M}(0, 2n)$

Braid groups and Mapping class groups of punctured spheres

■ **Definition (Braid groups)**

The braid group of *k* strands has a presentation

$$
B_n=\left\langle \sigma_1,\sigma_2,\ldots,\sigma_{k-1}\left|\begin{array}{l}\sigma_i\sigma_{i+1}\sigma_i=\sigma_{i+1}\sigma_i\sigma_{i+1} & (1\leq i1)\end{array}\right.\right\rangle.
$$

The generator σ_i represents the following braid diagram:

$$
\sigma_i = \left| \cdots \left| \bigvee_{i=1}^{i} \cdots \left| \bigvee_{i=1}^{i+1} \cdots \bigvee_{i=1}^{i+1} \sigma_i \right| \right| \cdots \left| \sigma_i \right| = 1, 2, \ldots, k-1.
$$

The composition of two braid diagrams *ab* is given by gluing *b* on the top of *a*.

We construct a quantum representation of the mapping class group of punctured sphere $\mathcal{M}(0, 2n)$ from an action of B_{2n} on $\mathcal{S}_q(1^{\otimes 2n})$. The action of $\sigma \in B_{2n}$ on $\mathcal{S}_q(1^{\otimes 2n})$ is defined by gluing σ^{-1} on the top of $([0, 1]^3, 2n)$.

$\frac{Q_{\text{quantum } \text{ representations of }} \mathcal{M}(0, 2n)}{\text{The action of } B_{2n} \text{ on } \mathcal{S}_q(1^{\otimes 2n})}$

The action $\widetilde{\rho}$ of B_{2n} on the clasped web spaces $\mathcal{S}_q(1^{\otimes 2n})$ is defined as follows.

Quantum representations of *M*(0*,* 2*n*) Quantum represenatations of *M*(0*,* 2*n*)

We construct a quantum representation of $\mathcal{M}(0,2n)$ from $\tilde{\rho}$. It is well-known that $M(0, 2n)$ is a quotient of B_{2n} by two relators:

$$
R_1 = \sigma_1 \sigma_2 \dots \sigma_{2n-1} \sigma_{2n-1} \sigma_{2n-2} \dots \sigma_1
$$

\n
$$
R_2 = (\sigma_1 \sigma_2 \dots \sigma_{2n-1})^{2n}.
$$

One can obtain $\tilde{\rho}(R_1) = \tilde{\rho}(R_2) = \text{Id}$ in $PGL(\mathcal{S}_q(1^{\otimes 2n}))$ by easy calculations. Thus, the projectivization of $\widetilde{\rho}\colon B_{2n}\to \textit{GL}(\mathcal{S}_q(1^{\otimes 2n}))$ factors through $\rho \colon \mathcal{M}(0, 2n) \to \mathit{PGL}(\mathcal{S}_q(1^{\otimes 2n}))$.

$$
\begin{array}{ccc}\n B_{2n} & \stackrel{\sim}{\longrightarrow} & GL(\mathcal{S}_q(1^{\otimes 2n})) \\
& & \downarrow \\
\downarrow^{R_1, R_2} & & \downarrow \\
& \downarrow^{R_1, R_2} & & \downarrow \\
& \downarrow^{projectivization} \\
& \mathcal{M}(0, 2n) & \stackrel{\rho}{\longrightarrow} & PGL(\mathcal{S}_q(1^{\otimes 2n}))\n \end{array}
$$

In finitelest of a power subgroup of $\mathcal{M}(0, 2n)$

Strategy for proving inifiniteness of the index of a power subgroup

Masbaum's strategy

For given power *m*, find a primitive *r*-th root of unity *q* and $f \in M(0, 2n)$ such that

- **D** $\rho(\sigma_1^m) = \text{Id}$,
- $\rho(f)$ has inifinite order in $PGL(S_q(1^{\otimes 2n}))$.

■ **Remark** σ_1 is conjugate to σ_i for any $i = 1, 2, ..., 2n - 1$.

For any embedded uni-trivalent graph $\mathcal T$ in $\left([0,1]^3,2n\right)$, $\rho_{\mathcal T}$ denotes the matrix representation of *ρ* with respect to the ordered basis B_T .

 \blacktriangleright **Strategy 1 (easy)** Computing $\rho(\sigma_1^m)$ by using the basis $\mathcal{B}_{\mathcal{T}}$ and a twist formula

$$
\int_{c}^{a} \int_{c}^{b} = (-1)^{\frac{a-b-c}{2}} q^{-\frac{1}{8}(a(a+2)-b(b+2)-c(c+2))} \int_{b}^{a} \int_{c}^{c}
$$

$$
\sim \rho(\sigma_1^m)(\beta_{\tau}(0, a_1, \ldots, a_{2n-3})) = (-1)^m q^{\frac{3m}{4}} \beta_{\tau}(0, a_1, \ldots, a_{2n-3}),
$$

$$
\rho(\sigma_1^m)(\beta_{\tau}(2, a_1, \ldots, a_{2n-3})) = q^{-\frac{m}{4}} \beta_{\tau}(2, a_1, \ldots, a_{2n-3}).
$$

If the index of a power subgroup of $\mathcal{M}(0, 2n)$

Strategy for proving inifiniteness of the index of a power subgroup

Masbaum's strategy

For given power *m*, find a primitive *r*-th root of unity *q* and $f \in M(0, 2n)$ such that

- **D** $\rho(\sigma_1^m) = \text{Id}$,
- $\rho(f)$ has inifinite order in $PGL(S_q(1^{\otimes 2n}))$.

Solution for strategy 1

- *•* If *m* is even, then *q* is a *m*-th root of unity,
- *•* If *m* is odd, then *q* is a 2*m*-th root of unity.
- ► <code>Strategy 2</code> Suppose $\rho(f)^N =$ Id in $PGL(\mathcal{S}_q(1^{\otimes 2n}))$, then the lift $\sigma \in \mathcal{B}_{2n}$ of *f* satisfies $\widetilde{\rho}(\sigma^N)=\lambda$ Id in $GL(\mathcal{S}_q(1^{\otimes 2n}))$ for some $\lambda\in\mathbb{C}.$ This condition implies

 $|\mathsf{trace}(\tilde{\rho}(\sigma))| \leq \mathsf{rank}(\tilde{\rho}(\sigma))$

■ Find $σ ∈ B_{2n}$ satisfying $|\text{trace}(\tilde{ρ}(σ))| > \text{rank}(\tilde{ρ}(σ)) \cdot \cdot \cdot (clubsuit).$

R intervals of the index of a power subgroup of $\mathcal{M}(0, 2n)$ Review of Masbaum's calculation for the remaining case ($m = 5$)

 M asbaum compute $\tilde{\rho}_T(\sigma)$ where $\sigma = \sigma_1^2 \sigma_2^{-2} \in B_{2n}$. One can compute

$$
\rho_{\mathcal{T}}(\sigma) = \begin{bmatrix} (1+q^2 \, [3]) \, [2]^{-2} \, I_k & (-1+q^2) \, [3] \, [2]^{-3} \, I_k & O \\ (1-q^{-2}) \, [2]^{-1} \, I_k & (1+(-1)^s q^{-2} \, [3]) \, [2]^{-2} \, I_k & O \\ O & O & I_{k'} \end{bmatrix}.
$$

 $\mathsf{tr}(\rho_{\mathcal{T}}(\sigma)) = f(q)k + k'$ where $f(q) = (q^2 + q^{-2}) - 1$ \int *q* − *q*^{−1} $q^{\frac{1}{2}}+q^{-\frac{1}{2}}$ \setminus ² *.* Set $q = \exp(i\theta)$, the condition (\clubsuit) is satistied when

$$
\frac{2\pi}{3} < \theta < \pi, \pi < \theta < \frac{4\pi}{3}. \pi
$$

In the case of *m* = 5, the strategy 1 requires *q* of a primitive 10-th root of unity. However, $\theta = \frac{\pi}{5}, \frac{3\pi}{5}, \frac{7\pi}{5}, \frac{9\pi}{5} \cdots$ do not satisfy the condition.

Infiniteness of the index of a power subgroup of *M*(0*,* 2*n*) Review of Masbaum's calculation for the remaining case $(m = 5)$

 M asbaum compute $\tilde{\rho}_T(\sigma)$ where $\sigma = \sigma_1^2 \sigma_2^{-2} \in B_{2n}$. One can compute

$$
\rho_{\mathcal{T}}(\sigma) = \begin{bmatrix} (1+q^2 \, [3]) \, [2]^{-2} \, I_k & (-1+q^2) \, [3] \, [2]^{-3} \, I_k & O \\ (1-q^{-2}) \, [2]^{-1} \, I_k & (1+(-1)^s q^{-2} \, [3]) \, [2]^{-2} \, I_k & O \\ O & O & I_{k'} \end{bmatrix}.
$$

$$
\text{tr}(\rho \tau(\sigma)) = f(q)k + k' \text{ where } f(q) = (q^2 + q^{-2}) - \left(\frac{q - q^{-1}}{q^{\frac{1}{2}} + q^{-\frac{1}{2}}}\right)^2.
$$

Set $q = \exp(i\theta)$, the condition **(A)** is satisfied when

$$
\frac{2\pi}{3} < \theta < \pi, \pi < \theta < \frac{4\pi}{3}. \pi
$$

In the case of *m* = 5, the strategy 1 requires *q* of a primitive 10-th root of unity. However, $\theta = \frac{\pi}{5}, \frac{3\pi}{5}, \frac{7\pi}{5}, \frac{9\pi}{5} \cdots$ do not satisfy the condition.

Infiniteness of the index of a power subgroup of $\mathcal{M}(0, 2n)$ Our calculation for the remaining case $(m = 5)$

We compute $\tilde{\rho}_T(\sigma)$ where

$$
\sigma = (\sigma_1 \sigma_2 \ldots \sigma_{n-1})^n \sigma_n (\sigma_1 \sigma_2 \ldots \sigma_{n-1})^{-n} \sigma_n^{-1} \in B_{2n}.
$$

To calculate $\tilde{\rho}_T(\sigma)$, we use the ordered basis \mathcal{B}_T and new basis \mathcal{B}_Y whose elements are

*··· ··· ^a*0⁼ ¹ ⁼*an−*² *^a*¹ *^a*² *^an−*² *^an−*¹ *^aⁿ ^a*2*n−*³ *β^Y* (*a*1*, a*2*, . . . , a*2*n−*³) = *.*

One can compute $\tilde{\rho}_T(\sigma)$ as follows:

$$
(\mathcal{B}_{\tau} \stackrel{6j}{\rightsquigarrow} \mathcal{B}_{Y}) \rightarrow \tilde{\rho}_{Y}(\sigma_{n}^{-1}) \rightarrow (\mathcal{B}_{Y} \stackrel{6j}{\rightsquigarrow} \mathcal{B}_{\tau}) \rightarrow \tilde{\rho}_{T}((\sigma_{1}\sigma_{2} \ldots \sigma_{n-1})^{-n})
$$

$$
\rightarrow (\mathcal{B}_{\tau} \stackrel{6j}{\rightsquigarrow} \mathcal{B}_{Y}) \rightarrow \tilde{\rho}_{Y}(\sigma_{n}) \rightarrow (\mathcal{B}_{Y} \stackrel{6j}{\rightsquigarrow} \mathcal{B}_{\tau}) \rightarrow \tilde{\rho}_{T}((\sigma_{1}\sigma_{2} \ldots \sigma_{n-1})^{n})
$$

We use the twist formula for $\tilde{\rho}_Y(\sigma_n)$ and $\tilde{\rho}_T((\sigma_1\sigma_2\ldots\sigma_{n-1})^n)$ makes a curl on a edge of *T* colored with *aⁿ−*¹.

$\text{Res of the index of a power subgroup of } \mathcal{M}(0, 2n)$

Our calculation for the remaining case $(m = 5)$

We compute $\rho_T(\sigma)$ for odd $n \geq 3$, and for even $n \geq 4$. We only see the case of odd $n \geq 3$.

The direct computation of the matrix representation $M = \tilde{\rho}_T(\sigma)$ gives

$$
M = \begin{cases} I_{k_{r-4}} \oplus I_{l_1(1)} \oplus M(1) \oplus M(3) \oplus \cdots \oplus M(r-4) & \text{if } r \text{ is odd,} \\ I_{k_{r-3}} \oplus I_{l_1(1)} \oplus M(1) \oplus M(3) \oplus \cdots \oplus M(r-5) \oplus I_{l_2(r-3)} & \text{if } r \text{ is even,} \end{cases}
$$

where

$$
\begin{split} M(a) & = \left[\begin{array}{cc} \left(1-(1-f_a(q)f_{a+2}(q^{-1}))\frac{[a+1][a+3]}{[a+2]^2}\right)f_{2}(a) & (1-f_a(q)f_{a+2}(q^{-1}))\frac{(-q^{\frac{1}{2}}[a+1]+q^{-\frac{1}{2}}[a+3]][a+1][a+3]}{[2][a+2]^3}f_{2}(a) \right. \\ & \left. (1-f_a(q^{-1})f_{a+2}(q))\frac{q^{-\frac{1}{2}}[a+1]-q^{\frac{1}{2}}[a+3]}{[2][a+2]}f_{2}(a) & \left(1-(1-f_a(q^{-1})f_{a+2}(q))\frac{[a+1][a+3]}{[a+2]^2}\right)f_{2}(a) \right. \end{array} \right], \end{split}
$$
 and
$$
f_a(q) = \left(-1\right)^a\left(q^a + q^{-a}\right) + \left(-1\right)^{a+1}\left(\frac{q^{\frac{a}{2}} + (-1)^{a+1}q^{-\frac{a}{2}}}{1}\right)^2.
$$

and $f_a(q) = (-1)^a (q^a + q^{-a}) + (-1)^{a+1} \left(\frac{q^{\frac{a}{2}} + (-1)^{a+1} q^{-\frac{a}{2}}}{1 - q^{-a}} \right)$ $q^{\frac{1}{2}} + q^{-\frac{1}{2}}$ Thus,

$$
\mathrm{tr}(M(a)) = \left(2 - (2 - f_a(q)f_{a+2}(q^{-1}) - f_a(q^{-1})f_{a+2}(q))\frac{[a+1][a+3]}{[a+2]^2}\right)l_2(a)
$$

= $2l_2(a) + (q^{\frac{a+1}{2}} - q^{-\frac{a+1}{2}})(q^{\frac{a+3}{2}} - q^{-\frac{a+3}{2}})l_2(a)$

Initeness of the index of a power subgroup of $\mathcal{M}(0, 2n)$ Our calculation for the remaining case $(m = 5)$

The condition (♣) is $(q^{\frac{a+1}{2}} - q^{-\frac{a+1}{2}})(q^{\frac{a+3}{2}} - q^{-\frac{a+3}{2}}) > 0.$ Then, the angle of $q = \exp(i\theta)$ is

In fact, 10-th roots of unity $q = \exp(3\pi/5)$, $\exp(7\pi/5)$ satisfy this condition. Such direct computations of $\tilde{\rho}(\sigma)$ show the following:

■ **Theorem (Y.)**

For any 2*n* ≥ 6, *m* ≥ 5 and *m* ≠ 6, N_m has infinite index in $\mathcal{M}(0, 2n)$.

In $\mathcal{M}(0, 2n)$ Power subgroups of hyperelliptic mapping class groups

Let $\Sigma_g = \Sigma_g^0$ is an oriented closed surface of genus g equipped with a hyperelliptic involution *ι*: Σ*^g →* Σ*^g* .

The hyperelliptic mapping class group $\Delta_{\rm g}$ is the centralizer of the isotopy class of *ι* in *M*(*g,* 0).

$$
\Delta_g = \{f \in \mathcal{M}(g,0) \mid f \iota = \iota f\}
$$

E Remark For a SCC α on Σ_g , $t_\alpha \in \Delta_g$ if $\iota(\alpha) = \alpha$. The follwong theorem relates Δ_g to $\mathcal{M}(0, 2g + 2)$:

■ **Theorem (Birman-Hilden 1973)** ∆*^g /⟨ι⟩ ∼*= *M*(0*,* 2*g* + 2)*.*

In $\mathcal{M}(0, 2n)$ Power subgroups of hyperelliptic mapping class groups

A quantum representaiton

$$
\rho'\colon \Delta_g\to\mathit{PGL}(\mathcal{S}_q(1^{\otimes 2g+2}))
$$

is defined as a composition of the surjective homomorphism $\Delta_{\mathcal{g}} \rightarrow \mathcal{M}(0,2\mathcal{g}+2)$ and $\rho \colon \mathcal{M}(0,2\mathcal{g}+2) \rightarrow \mathit{PGL}(\mathcal{S}_q(1^{\otimes 2\mathcal{g}+2})).$ We study a power sugbroup $\mathcal{N}^{\iota}_{(k,\ell)}$ of Δ_g through $\rho'\colon \Delta_g\to\mathit{PGL}(\mathcal{S}_q(1^{\otimes 2g+2})).$

$$
\mathcal{N}_{(k,\ell)}^{\iota}=\text{the normal closure of }\{t_c^k,t_{\delta_h}^{\ell}\mid h=1,2,\ldots g-1\}\text{ in }\Delta_g
$$

genus *h* subsurface

Infiniteness of the index of a power subgroup of *M*(0*,* 2*n*)

We use the same strategy to Masbaum's one:

Strategy for ∆*^g*

For given powers k, ℓ , find a primitive *r*-th root of unity *q* and $f \in \Delta_g$ such that

- $\mathbf{p}^{'}(t_c^k) = \mathsf{Id}$, and $\rho'(t_{\delta_h}^\ell) = \mathsf{Id}$ for any $h=1,2,\ldots,g-1,$
- \mathbf{Q} $\rho'(f)$ has inifinite order in $\mathit{PGL}(S_q(1^{\otimes 2n}))$.

■ **Remark**

The projection of $t_c \in \Delta_g$ on $\mathcal{M}(0,2g+2)$ is σ_1 , and t_{δ_h} is $(\sigma_1\sigma_2\dots\sigma_{2h})^{4h+2}$

We only have to calculate $\rho'(t_{\delta_h})$ and and solve the strategy $1.$

■ **Proposition** (Y.)

Let *q* be a primitive *r*-th root of unity and ρ : $\Delta_g \rightarrow S_q(1^{\otimes 2g+2})$ the projective representation. Then,

- $\mathbf{p} \ \rho(t_{\delta_h}^{\ell}) = \mathsf{Id}$ for any $g \geq 2$ and $1 \leq h \leq \lfloor g/2 \rfloor$ when $r=4,$
- $\rho(t_{\delta_h}^\ell)=$ Id if $\mathsf{q}^{6\ell}=1$ for any $\mathsf{g}\geq 2$ and $1\leq h\leq \lfloor \mathsf{g}/2\rfloor$ when $r=5,6,$
- **3** $\rho(t_{\delta_1}^{\ell}) =$ Id if $\boldsymbol{q}^{6\ell} = 1$ for $\boldsymbol{g} = 2, 3$ when $r \geq 7.$
- $\bm{\rho}\left(t_{\delta_h}^{\ell}\right)=$ Id if $\bm{q}^{2\ell}=1$ for any $\bm{g}\geq4$ and $1\leq h\leq \lfloor\bm{g}/2\rfloor$ when $r\geq7.$

Infiniteness of the index of a power subgroup of *M*(0*,* 2*n*)

We use a lift of $\sigma = (\sigma_1 \sigma_2 \dots \sigma_{n-1})^n \sigma_n (\sigma_1 \sigma_2 \dots \sigma_{n-1})^{-n} \sigma_n^{-1}$ as *f* in the strategy 2. The computation of $\rho'(f)$ is similar to $\rho(\sigma)$, and we already computeted the matrix. Consequently, we obtain the follwoing:

■ **Theorem** (Y.)

 ${\bf g}=2,3,~m\geq1,~\mathcal{N}^{\iota}_{(6m+3,2m+1)}$ and $\mathcal{N}^{\iota}_{(6m+9,2m+3)}$ have infinite indices in ∆*^g* . ⊘ $g = 2, 3, \ m \geq 2,$ $\mathcal{N}_{(6m, m)}^{\iota}$ and $\mathcal{N}_{(6m+6, m+1)}^{\iota}$ have infinite indices in Δ_{g} . **∂** g ≥ 4, m ≥ 2, $\mathcal{N}^{\iota}_{(2m,m)}$ and $\mathcal{N}^{\iota}_{(2m+1,2m+1)}$ have infinite indices in Δ_{g} .

 \blacksquare **Corollary (Y.)** $\left[\Delta_g; \tilde{\mathcal{N}}_m^i\right] = \infty$ if $g \geq 2$ and $m \geq 4$. $\tilde{\cal N}^\iota_m = {\cal N}^\iota_{(m,m)}$ and the third case show the corollary.