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Definition.

An n-tangle (B, T) is defined to be a pair of a 3-ball B and mutually
disjoint n(> 2) arcs T properly embedded in B.
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Previous results

Definition.
An n-tangle (B, T) is defined to be a pair of a 3-ball B and mutually
disjoint n(> 2) arcs T properly embedded in B.

Definition.

Let (B, T) be an n-tangle. A disjoint union 7 of simple arcs joining T to
itself is called an unknotting tunnel system if Ext(0B UT U T; B) is a
handlebody. The minimal number of such arcs is called the tunnel number
tnl(T) of (B, T).
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Previous results

Theorem. [S. (2014)]

Let K be a knot in 3 and T} U T, an n-tangle decomposition of K.
Then tnl(K) < tnl(Ty) + tnl(72) 4+ 2n — 1.
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Previous results

Theorem. [S. (2014)]

Let K be a knot in 3 and T} U T, an n-tangle decomposition of K.
Then tnl(K) < tnl(Ty) + tnl(72) 4+ 2n — 1.

Theorem. [S. (2018)]

Vn € Z>z, Vt1,Vta € Z>9, 3K = T1 UT> : an n-tangle
decomposition s.t. tnl(Ty) = t1, tnl(T2) = t2 and
tnl(K) = tnl(T1) + tnl(T2) + 2n — 1.
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Previous results

Theorem. [S. (2014)]

Let K be a knot in 3 and T} U T, an n-tangle decomposition of K.
Then tnl(K) < tnl(Ty) + tnl(72) 4+ 2n — 1.

Theorem. [S. (2018)]

Vn € Z>z, Vt1,Vta € Z>9, 3K = T1 UT> : an n-tangle
decomposition s.t. tnl(Ty) = t1, tnl(T2) = t2 and
tnl(K) = tnl(T1) + tnl(T2) + 2n — 1.

If tnl(T1) = tnl(T2) = 0 (i.e. both T} and T% are free),
this corresponds to Morimoto's conjecture.
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Generalized tangles

Definition.

A (g,n)-tangle (V,T) is defined to be a pair of a genus g handlebody V'
and mutually disjoint (> 2) arcs T' properly embedded in V.
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Generalized tangles

Definition.

A (g,n)-tangle (V,T) is defined to be a pair of a genus g handlebody V'
and mutually disjoint (> 2) arcs T' properly embedded in V.

Definition.

| N\

Let (V,T) be a (g, n)-tangle. A disjoint union 7 of simple arcs joining T
to itself is called an unknotting tunnel system if Ext(0V UT U T;V) is
a handlebody. The minimal number of such arcs is called the tunnel
number tnl(T') of (V,T).
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

e.g.) We want a (1, 2)-tangle of tunnel number 1.
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

e.g.) We want a (1, 2)-tangle of tunnel number 1.
What we need — a (1, 3)-knot of tunnel number 3.
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

e.g.) We want a (1, 2)-tangle of tunnel number 1.
What we need — a (1, 3)-knot of tunnel number 3.
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

e.g.) We want a (1, 2)-tangle of tunnel number 1.
What we need — a (1, 3)-knot of tunnel number 3.

19 (=58

< Remove an (open) reg. nbd. of the red spine.

€19 (=58

Toshio Saito (Joetsu Univ. of Edu.) High distance tangles



Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

e.g.) We want a (1, 2)-tangle of tunnel number 1
What we need — a (1, 3)-knot of tunnel number 3.

19 (=58

Remove an (open) reg. nbd. of the red spine.

C..t (=28

V := M3 — Nbd(Red Spine),
T:=KnNnYV.
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

\_/
s = (7 Qv .
N
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

€3
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

€3
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

In general, we can obtain a (g, n)-tangle (V,T) of tunnel number ¢
from a (g, n 4+ t)-knot of tunnel number g + n 4+t — 1.
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Generalized tangles

How to make a (g, n)-tangle (V,T) of tunnel number ¢

In general, we can obtain a (g, n)-tangle (V,T) of tunnel number ¢
from a (g, n 4+ t)-knot of tunnel number g + n 4+t — 1.

Remark (Ichihara-S., 2013).

Such a knot does exist.

c.f.) Knots with arbitrarily high distance bridge decompositions,
Bull. Korean Math. Soc. 50 (2013), no. 6, 1989-2000.
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Let K be a knot in a closed orientable 3-manifold and T3 U T3 a
(g, n)-tangle decomposition of K. Then
tnl(K) < tnl(7Th) + tnl(T2)+g + 2n — 1.
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Let K be a knot in a closed orientable 3-manifold and T3 U T3 a

(g, n)-tangle decomposition of K. Then
tnl(K) < tnl(7Th) + tnl(T2)+g + 2n — 1.

c.f.) Previous result

Let K be a knot in 3 and T} U T, an n-tangle decomposition of K.
Then tnl(K) < tnl(Ty) + tnl(72) + 2n — 1.
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[Sketch of Proof] e.g.) a (1, 2)-tangle decomposition
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[Sketch of Proof] e.g.) a (1, 2)-tangle decomposition

tnl(Tl) =0 tnl(Tz) =1
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[Sketch of Proof] e.g.) a (1, 2)-tangle decomposition

tnl(Tl) = 0 tnl(Tz) = 1

(Push—out operation
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Results

[Sketch of Proof] e.g.) a (1, 2)-tangle decomposition

tnl(Tl) = 0 tnl(Tz) = 1

(Push—out operation

(/—\ssembling the knot K
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Results

Moving spines
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Results
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Results

tnl(K) < 5.

Toshio Saito (Joetsu Univ. of Edu.) High distance tangles




Results

ito (Joetsu Univ. of Edu.) igh distance tangles



Let K be a knot in a closed orientable 3-manifold and T7; U T% a
(g, m)-tangle decomposition of K. Then
tnl(K) < tnl(Ty) + tnl(T2) + g + 2n — 1.
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Let K be a knot in a closed orientable 3-manifold and T7; U T% a
(g, m)-tangle decomposition of K. Then
tnl(K) < tnl(Ty) + tnl(T2) + g + 2n — 1.

Vg € L>1, Vn € L>2, Vti1,Vits € ZL>0, K =T, UT5 : a
(g, n)-tangle decomposition s.t. tnl(T7) = t;, tnl(7T2) = t2 and
tnl(K) = tnl(T1) + tnl(T2) + g + 2n — 1.
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Vg € ZZI’ Vn € ZZ2’ Vit ,Vis € ZZO’ dK =Th UT5 : a
(g, n)-tangle decomposition s.t. tnl(T1) = t;, tnl(T2) = t2 and
tnl(K) = tnl(T1) + tnl(T2) + g + 2n — 1.
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Vg € ZZI’ Vn € ZZ2’ Vit ,Vis € ZZO’ dK =Th UT5 : a
(g, n)-tangle decomposition s.t. tnl(T1) = t;, tnl(T2) = t2 and
tnl(K) = tnl(T1) + tnl(T2) + g + 2n — 1.

(Strategy of proof)

Just take very complicated tangles and identify their boundaries so that

the resulting link is a knot.

Toshio Saito (Joetsu Univ. of Edu.) High distance tangles



Vg € ZZI’ Vn € ZZ2’ Vit ,Vis € ZZO’ dK =Th UT5 : a
(g, n)-tangle decomposition s.t. tnl(T1) = t;, tnl(T2) = t2 and
tnl(K) = tnl(T1) + tnl(T2) + g + 2n — 1.

(Strategy of proof)

Just take very complicated tangles and identify their boundaries so that

the resulting link is a knot.

a very complicated tangle = a high distance tangle
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Curve complex
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Curve complex

Definition.
Let S be a closed orientable surface. The curve complex of S, denoted by
C(S), is the complex such that:

® the vertices are the isotopy classes of essential simple loops in .S, and

e distinct k vertices determine a k-simplex if they correspond to pairwise

disjoint loops.

Toshio Saito (Joetsu Univ. of Edu.) High distance tangles



Hempel distance
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Hempel distance

(V,T) = = Y e- =

Vi Va2
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Hempel distance
V; Va

1

ds(T) := min{ds(m,y) in C(S)

x : 0 of a c-disk in V;
y: 0 of ac-diskin Vo [
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Hempel distance

ds(T) := min{ds(m,y) in C(S)

x : 0 of a c-disk in V;
y: 0 of ac-diskin Vo [

Proposition.
Vg>1,Vn >2, Vt >0and Vd > 0, 3(V,T) : a (g, n)-tangle with
tnl(T) = t and ds(T") > d for a Heegaard surface S of (V,T).
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Existence of high distance tangles
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Existence of high distance tangles

Proposition.
Vg >1, Vn > 2, Vt > 0and Vd > 0, 3(V,T) : a (g,n)-tangle with
tnl(T) = t and dg(T") > d for a Heegaard surface S of (V,T).
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Existence of high distance tangles

Proposition.

Vg >1, Vn > 2, Vt > 0and Vd > 0, 3(V,T) : a (g,n)-tangle with
tnl(T) = t and dg(T") > d for a Heegaard surface S of (V,T).

(Proof)

It is enough to show the existence of high distance knots in a handlebody.
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Existence of high distance tangles

Proposition.

Vg >1, Vn > 2, Vt > 0and Vd > 0, 3(V,T) : a (g,n)-tangle with
tnl(T) = t and dg(T") > d for a Heegaard surface S of (V,T).

(Proof)

It is enough to show the existence of high distance knots in a handlebody.

GeEelcese
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Existence of high distance tangles

Proposition.

Vg >1, Vn > 2, Vt > 0and Vd > 0, 3(V,T) : a (g,n)-tangle with
tnl(T) = t and dg(T") > d for a Heegaard surface S of (V,T).

(Proof)

It is enough to show the existence of high distance knots in a handlebody.

CCEEE

Toshio Saito (Joetsu Univ. of Edu.) High distance tangles



Existence of high distance tangles

Proposition.

Vg >1, Vn > 2, Vt > 0and Vd > 0, 3(V,T) : a (g,n)-tangle with
tnl(T) = t and dg(T") > d for a Heegaard surface S of (V,T).

(Proof)

It is enough to show the existence of high distance knots in a handlebody.

GEEplce—=
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Existence of high distance knots
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Existence of high distance knots

The proof is based on the argument by Minsky-Moriah-Schleimer.

c.f.) High distance knots,
Algebr. Geom. Topol. 7 (2007), 1471-1483.
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Existence of high distance knots

The proof is based on the argument by Minsky-Moriah-Schleimer.

c.f.) High distance knots,
Algebr. Geom. Topol. 7 (2007), 1471-1483.

Key lemma. [Hempel (2001)]

Suppose X,Y C C(S).
X,Y: closures of X,Y in PML(S).
®: a pseudo-Anosov map with stable/unstable laminations AT,

AT €Y and AT € X = d(X,®"(Y)) — 0o as n — oo.
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Existence of high distance knots

§3 = V Ug W: a standard Heeg. splitting.

T o > D U e v

S
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Existence of high distance knots

§3 = V Ug W: a standard Heeg. splitting.
V'’ : =V — Nbd(Red Spine).
Then V/ Ug W is a Heeg. splitting of a handlebody.

S
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Existence of high distance knots

§3 = V Ug W: a standard Heeg. splitting.

V'’ : =V — Nbd(Red Spine).

Then V/ Ug W is a Heeg. splitting of a handlebody.
D: a disk cutting off a solid torus V'’ from V.
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Existence of high distance knots

§3 = V Ug W: a standard Heeg. splitting.

V'’ : =V — Nbd(Red Spine).

Then V/ Ug W is a Heeg. splitting of a handlebody.
D: a disk cutting off a solid torus V'’ from V.

So 1= cl(S — V).

Vg4 := V' — Nbd(Core of V).

U
! S
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Existence of high distance knots

§3 = V Ug W: a standard Heeg. splitting.

V'’ : =V — Nbd(Red Spine).

Then V/ Ug W is a Heeg. splitting of a handlebody.
D: a disk cutting off a solid torus V'’ from V.

So 1= cl(S — V).

Vg4 := V' — Nbd(Core of V).

U
S

Need to find a “nice” pseudo-Anosov map on S extending over V.
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Existence of high distance knots

As Minsky-Moriah-Schleimer did, we take pants decompositions P, Q as
follows.

e o = A - 4
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Existence of high distance knots

As Minsky-Moriah-Schleimer did, we take pants decompositions P, Q as

follows.
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Existence of high distance knots

As Minsky-Moriah-Schleimer did, we take pants decompositions P, Q as
follows.
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Existence of high distance knots

As Minsky-Moriah-Schleimer did, we take pants decompositions P, Q as
follows.

Claim 1. (Minsky-Moriah-Schleimer)
There is a meridian a of V'’ obtained from a band-sum on two copies of a
meridian of V' s.t. a traverses all seams of P and Q respectively.
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Existence of high distance knots

Claim 2. There are two meridians b, c of V' s.t. bU c fills S.
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Existence of high distance knots

Claim 2. There are two meridians b, c of V' s.t. bU c fills S.

a handlebody (a surface)x 0, 1]

N—/

=

filled by bo U co filled by =z U vy
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Existence of high distance knots

Claim 2. There are two meridians b, c of V' s.t. bU c fills S.
%[0, 1]

a handlebody (a surface)

filled by bo U co filled by =z U vy

b: a “good” band sum of two copies of bg along .
c: a “good” band sum of two copies of ¢g along y.
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Existence of high distance knots

Claim 3. (Minsky-Moriah-Schleimer)
&N :=71No(mpor 1)o7, N (IN > 0) satisfies the assumption of
Key lemma.
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Existence of high distance knots

Claim 3. (Minsky-Moriah-Schleimer)
&N :=71No(mpor 1)o7, N (IN > 0) satisfies the assumption of
Key lemma.

SincebU cfills S, 1, 0 ‘Tc_l is p.A. with stable/unstable laminations, say
AL
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Existence of high distance knots

Claim 3. (Minsky-Moriah-Schleimer)
&N :=71No(mpor 1)o7, N (IN > 0) satisfies the assumption of
Key lemma.

SincebU cfills S, 1, 0 ‘Tc_l is p.A. with stable/unstable laminations, say
)\(ﬂf. The stable/unstable laminations of ® v are )\ﬁ = rf()ﬁ).
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Existence of high distance knots

Claim 3. (Minsky-Moriah-Schleimer)
&N :=71No(mpor 1)o7, N (IN > 0) satisfies the assumption of
Key lemma.

SincebU cfills S, 1, 0 ‘Tc_l is p.A. with stable/unstable laminations, say
)\(ﬂf. The stable/unstable laminations of ® v are )\ﬁ = T;V(Aﬁ). Since
anAE #0, AL = [a] in PML(S).
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Existence of high distance knots

Claim 3. (Minsky-Moriah-Schleimer)
&N :=71No(mpor 1)o7, N (IN > 0) satisfies the assumption of
Key lemma.

SincebU cfills S, 1, 0 ‘Tc_l is p.A. with stable/unstable laminations, say
)\(ﬂf. The stable/unstable laminations of ® v are )\ﬁ = T;V(Aﬁ). Since
an )\(:)l: # 0, >‘1:|\Er — [a] in PML(S). Since a traverses all seams of P
and @, AL, € D(VY) and Ay € D(W) for N > 0.
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Existence of high distance knots

Claim 3. (Minsky-Moriah-Schleimer)
&N :=71No(mpor 1)o7, N (IN > 0) satisfies the assumption of
Key lemma.

SincebU cfills S, 1, 0 ‘Tc_l is p.A. with stable/unstable laminations, say
)\(ﬂf. The stable/unstable laminations of ® v are )\ﬁ = T;V(A(?). Since
an )\(:)t # 0, >‘1:|\Er — [a] in PML(S). Since a traverses all seams of P
and @, AL, € D(VY) and Ay € D(W) for N > 0.

Hence [d(®%,(D(Vy)), D(W)) — oo as n — oo.

Toshio Saito (Joetsu Univ. of Edu.) High distance tangles



Outline of proof of Theorem 2
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Outline of proof of Theorem 2

Vg € ZZI’ Vn € ZZZ’ Vti1,Vits € ZZO’ dK =Th1 UT5 : a
(g, m)-tangle decomposition s.t. tnl(T1) = t;, tnl(T2) = t2 and
tnl(K) = tnl(T1) + tnl(T2) + g + 2n — 1.
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Outline of proof of Theorem 2

Vg € Z>y, Vn € L>2, Vti1,Vits € L0, dK =Th1 UT5 : a
(g, m)-tangle decomposition s.t. tnl(T1) = t;, tnl(T2) = t2 and
tnl(K) = tnl(T1) + tnl(T3) + g + 2n — 1.

If a generalized tangle contains an essential surface, its Euler characteristic

bounds distance from above.
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Outline of proof of Theorem 2
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Outline of proof of Theorem 2

(M3, K) = (Vi,Th) Up (V2, Tz)
F : a minimal genus Heegaard surface of (M3, K).

P }Wz
S1 So
Viin Viz Va1 Voo

(V1,Th) (VzEz)
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Outline of proof of Theorem 2
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Outline of proof of Theorem 2

P }Wz
S1 So
Viin. Viz Var  Vaa

~

Vi, 1) (Va,T»)
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Outline of proof of Theorem 2

P }Wz
S1 So
Viin. Viz Var  Vaa

Vi, 1) (Va, T»)

Proposition.

F' is weakly reducible.
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Outline of proof of Theorem 2

P }Wz
S1 So
Viin. Viz Var  Vaa

Vi, 1) (Va, T»)

Proposition.
F' is weakly reducible.

(proof)
Kobayashi-Qiu's argument : otherwise, F' N V7 or F' N V5 is essential.
Essential surfaces bound distance from above, a contradiction.
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Outline of proof of Theorem 2
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Outline of proof of Theorem 2
B

F
P }Wz

S1 S
Viin, Viz Va1 Voo

(Vlle) (‘/2?T2)
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Outline of proof of Theorem 2

o
F

P }Wz
S1 S
Viin, Viz Va1 Voo

(Vlle) (‘/2?T2)

Proposition.
F' is the amalgamation of S7 and Ss.
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Outline of proof of Theorem 2

o
F

P }Wz
S1 S
Viin, Viz Va1 Voo

(Vlle) (‘/2?T2)

Proposition.

F' is the amalgamation of S7 and Ss.

(proof)  Since F is weakly reducible, (M3, K') admits a generalized

bridge surface by (c-)weak reduction.
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Outline of proof of Theorem 2

b

F
P }Wz
S1 Ss
Viin Viz Va1 Vao

(Vlle) (‘/27T2)

Proposition.

F' is the amalgamation of S7 and Ss.

(proof)  Since F is weakly reducible, (M3, K') admits a generalized
bridge surface by (c-)weak reduction. If there is an essential surface not
ambient isotopic to P, then it again bounds distance, a contradiction.
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Outline of proof of Theorem 2
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Proposition.

F' is the amalgamation of S7 and Ss.

(proof)  Since F is weakly reducible, (M3, K') admits a generalized
bridge surface by (c-)weak reduction. If there is an essential surface not
ambient isotopic to P, then it again bounds distance, a contradiction.
Hence P is the only essential surface. This implies the conclusion.
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