Tunnel number of knots and generalized tangles

Toshio Saito (斎藤 敏夫)

Joetsu University of Education (上越教育大学)

Definition.

An *n*-tangle (B, T) is defined to be a pair of a 3-ball B and mutually disjoint $n(\geq 2)$ arcs T properly embedded in B.

Definition.

An *n*-tangle (B, T) is defined to be a pair of a 3-ball B and mutually disjoint $n(\geq 2)$ arcs T properly embedded in B.

Definition.

Let (B,T) be an *n*-tangle. A disjoint union τ of simple arcs joining T to itself is called an *unknotting tunnel system* if $\text{Ext}(\partial B \cup T \cup \tau; B)$ is a handlebody. The minimal number of such arcs is called the *tunnel number* tnl(T) of (B,T).

Theorem. [S. (2014)]

Let K be a knot in S^3 and $T_1 \cup T_2$ an n-tangle decomposition of K. Then $\operatorname{tnl}(K) \leq \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + 2n - 1$.

Theorem. [S. (2014)]

Let K be a knot in S^3 and $T_1 \cup T_2$ an n-tangle decomposition of K. Then $\operatorname{tnl}(K) \leq \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + 2n - 1$.

Theorem. [S. (2018)]

 $orall n \in \mathbb{Z}_{\geq 2}, \ orall t_1, orall t_2 \in \mathbb{Z}_{\geq 0}, \ \exists K = T_1 \cup T_2 : \text{ an } n\text{-tangle}$ decomposition s.t. $\operatorname{tnl}(T_1) = t_1, \ \operatorname{tnl}(T_2) = t_2$ and $\operatorname{tnl}(K) = \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + 2n - 1.$

Theorem. [S. (2014)]

Let K be a knot in S^3 and $T_1 \cup T_2$ an n-tangle decomposition of K. Then $\operatorname{tnl}(K) \leq \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + 2n - 1$.

Theorem. [S. (2018)]

 $orall n \in \mathbb{Z}_{\geq 2}, \ orall t_1, orall t_2 \in \mathbb{Z}_{\geq 0}, \ \exists K = T_1 \cup T_2 : \text{ an } n\text{-tangle}$ decomposition s.t. $\operatorname{tnl}(T_1) = t_1, \ \operatorname{tnl}(T_2) = t_2$ and $\operatorname{tnl}(K) = \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + 2n - 1.$

Remark.

If $\operatorname{tnl}(T_1) = \operatorname{tnl}(T_2) = 0$ (i.e. both T_1 and T_2 are free), this corresponds to Morimoto's conjecture.

Definition.

A (g, n)-tangle (V, T) is defined to be a pair of a genus g handlebody Vand mutually disjoint $n(\geq 2)$ arcs T properly embedded in V.

Definition.

A (g, n)-tangle (V, T) is defined to be a pair of a genus g handlebody Vand mutually disjoint $n(\geq 2)$ arcs T properly embedded in V.

Definition.

Let (V, T) be a (g, n)-tangle. A disjoint union τ of simple arcs joining T to itself is called an *unknotting tunnel system* if $Ext(\partial V \cup T \cup \tau; V)$ is a handlebody. The minimal number of such arcs is called the *tunnel number* tnl(T) of (V, T).

How to make a (g,n)-tangle (V,T) of tunnel number t $\left|$

How to make a (g,n)-tangle (V,T) of tunnel number t

e.g.) We want a (1,2)-tangle of tunnel number 1.

How to make a (g,n)-tangle (V,T) of tunnel number t

e.g.) We want a (1, 2)-tangle of tunnel number 1. What we need \longrightarrow a (1, 3)-knot of tunnel number 3.

How to make a (g,n)-tangle (V,T) of tunnel number t

e.g.) We want a (1, 2)-tangle of tunnel number 1. What we need \longrightarrow a (1, 3)-knot of tunnel number 3.

How to make a (g,n)-tangle (V,T) of tunnel number t

e.g.) We want a (1,2)-tangle of tunnel number 1.

What we need \longrightarrow a (1, 3)-knot of tunnel number 3.

How to make a (g,n)-tangle (V,T) of tunnel number t

e.g.) We want a (1,2)-tangle of tunnel number 1.

What we need \longrightarrow a (1, 3)-knot of tunnel number 3.

How to make a (g,n)-tangle (V,T) of tunnel number t $\left|$

How to make a (g,n)-tangle (V,T) of tunnel number t

How to make a (g,n)-tangle (V,T) of tunnel number t $\left|$

How to make a (g,n)-tangle (V,T) of tunnel number t

In general, we can obtain a (g,n)-tangle (V,T) of tunnel number t from a (g,n+t)-knot of tunnel number g+n+t-1.

How to make a (g,n)-tangle (V,T) of tunnel number t

In general, we can obtain a (g,n)-tangle (V,T) of tunnel number t from a (g,n+t)-knot of tunnel number g+n+t-1.

Remark (Ichihara-S., 2013).

Such a knot does exist.

c.f.) Knots with arbitrarily high distance bridge decompositions, Bull. Korean Math. Soc. 50 (2013), no. 6, 1989–2000.

Theorem 1.

Let K be a knot in a closed orientable 3-manifold and $T_1 \cup T_2$ a (g,n)-tangle decomposition of K. Then $\operatorname{tnl}(K) \leq \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + g + 2n - 1.$

Theorem 1.

Let K be a knot in a closed orientable 3-manifold and $T_1 \cup T_2$ a (g, n)-tangle decomposition of K. Then $\operatorname{tnl}(K) \leq \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + g + 2n - 1.$

c.f.) Previous result

Let K be a knot in S^3 and $T_1 \cup T_2$ an n-tangle decomposition of K. Then $\operatorname{tnl}(K) \leq \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + 2n - 1$.

$\left[\mbox{Sketch of Proof} \right]$ e.g.) a $(1,2)\mbox{-tangle decomposition}$

[Sketch of Proof] e.g.) a (1, 2)-tangle decomposition

[Sketch of Proof] e.g.) a (1, 2)-tangle decomposition

 $[\mathsf{Sketch} ext{ of Proof}] ext{ e.g.}$ a (1,2)-tangle decomposition

Toshio Saito (Joetsu Univ. of Edu.)

Theorem 1.

Let K be a knot in a closed orientable 3-manifold and $T_1 \cup T_2$ a (g, n)-tangle decomposition of K. Then $\operatorname{tnl}(K) \leq \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + g + 2n - 1.$

Theorem 1.

Let K be a knot in a closed orientable 3-manifold and $T_1 \cup T_2$ a (g, n)-tangle decomposition of K. Then $\operatorname{tnl}(K) \leq \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + g + 2n - 1.$

Question. $\forall g \in \mathbb{Z}_{\geq 1}, \ \forall n \in \mathbb{Z}_{\geq 2}, \ \forall t_1, \forall t_2 \in \mathbb{Z}_{\geq 0}, \ \exists ?K = T_1 \cup T_2 : a$ (g, n)-tangle decomposition s.t. $\operatorname{tnl}(T_1) = t_1, \ \operatorname{tnl}(T_2) = t_2$ and $\operatorname{tnl}(K) = \operatorname{tnl}(T_1) + \operatorname{tnl}(T_2) + g + 2n - 1.$

Theorem 2.

 $egin{aligned} &orall g\in\mathbb{Z}_{\geq1},\ orall n\in\mathbb{Z}_{\geq2},\ orall t_1,orall t_2\in\mathbb{Z}_{\geq0},\ \exists K=T_1\cup T_2: \mathsf{a}\ &(g,n) ext{-tangle decomposition s.t. } \operatorname{tnl}(T_1)=t_1,\ \operatorname{tnl}(T_2)=t_2 ext{ and}\ &\operatorname{tnl}(K)=\operatorname{tnl}(T_1)+\operatorname{tnl}(T_2)+g+2n-1. \end{aligned}$

Theorem 2.

$$egin{aligned} &orall g\in\mathbb{Z}_{\geq1},\ orall n\in\mathbb{Z}_{\geq2},\ orall t_1,orall t_2\in\mathbb{Z}_{\geq0},\ \exists K=T_1\cup T_2: ext{ a}\ &(g,n) ext{-tangle decomposition s.t. } ext{tnl}(T_1)=t_1,\ ext{tnl}(T_2)=t_2 ext{ and}\ & ext{tnl}(K)= ext{tnl}(T_1)+ ext{tnl}(T_2)+g+2n-1. \end{aligned}$$

(Strategy of proof)

Just take very complicated tangles and identify their boundaries so that the resulting link is a knot.

Theorem 2.

 $egin{aligned} &orall g\in\mathbb{Z}_{\geq1},\ orall n\in\mathbb{Z}_{\geq2},\ orall t_1,orall t_2\in\mathbb{Z}_{\geq0},\ \exists K=T_1\cup T_2: ext{ a}\ &(g,n) ext{-tangle decomposition s.t. } ext{tnl}(T_1)=t_1,\ ext{tnl}(T_2)=t_2 ext{ and}\ & ext{tnl}(K)= ext{tnl}(T_1)+ ext{tnl}(T_2)+g+2n-1. \end{aligned}$

(Strategy of proof)

Just take very complicated tangles and identify their boundaries so that the resulting link is a knot.

a very complicated tangle pprox a high distance tangle

Curve complex

Curve complex

Definition.

Let S be a closed orientable surface. The *curve complex* of S, denoted by $\mathcal{C}(S)$, is the complex such that:

- ullet the vertices are the isotopy classes of essential simple loops in S, and
- distinct *k* vertices determine a *k*-simplex if they correspond to pairwise disjoint loops.

Proposition.

 $\forall g \geq 1, \ \forall n \geq 2, \ \forall t \geq 0 \ \text{and} \ \forall d > 0, \ \exists (V,T) : a \ (g,n) \text{-tangle with} \\ \operatorname{tnl}(T) = t \ \operatorname{and} \ \operatorname{d}_S(T) > d \ \text{for a Heegaard surface} \ S \ of \ (V,T).$

Existence of high distance tangles

 $\forall g \geq 1, \ \forall n \geq 2, \ \forall t \geq 0 \ \text{and} \ \forall d > 0, \ \exists (V,T) : a (g,n) \text{-tangle with} \\ \operatorname{tnl}(T) = t \ \text{and} \ \operatorname{d}_S(T) > d \ \text{for a Heegaard surface} \ S \ \text{of} \ (V,T).$

 $\forall g \geq 1, \ \forall n \geq 2, \ \forall t \geq 0 \ \text{and} \ \forall d > 0, \ \exists (V,T) : a (g,n) \text{-tangle with} \\ \operatorname{tnl}(T) = t \ \operatorname{and} \ \operatorname{d}_S(T) > d \ \text{for a Heegaard surface} \ S \ \operatorname{of} (V,T).$

(Proof)

 $\forall g \geq 1, \ \forall n \geq 2, \ \forall t \geq 0 \ \text{and} \ \forall d > 0, \ \exists (V,T) : a \ (g,n) \text{-tangle with} \\ \operatorname{tnl}(T) = t \ \operatorname{and} \ \operatorname{d}_S(T) > d \ \text{for a Heegaard surface} \ S \ of \ (V,T).$

(Proof)

 $\forall g \geq 1, \ \forall n \geq 2, \ \forall t \geq 0 \ \text{and} \ \forall d > 0, \ \exists (V,T) : a \ (g,n) \text{-tangle with} \\ \operatorname{tnl}(T) = t \ \operatorname{and} \ \operatorname{d}_S(T) > d \ \text{for a Heegaard surface} \ S \ of \ (V,T).$

(Proof)

 $\forall g \geq 1, \ \forall n \geq 2, \ \forall t \geq 0 \ \text{and} \ \forall d > 0, \ \exists (V,T) : a \ (g,n) \text{-tangle with} \\ \operatorname{tnl}(T) = t \ \operatorname{and} \ \operatorname{d}_S(T) > d \ \text{for a Heegaard surface} \ S \ of \ (V,T).$

(Proof)

The proof is based on the argument by Minsky-Moriah-Schleimer.

c.f.) High distance knots,

Algebr. Geom. Topol. 7 (2007), 1471-1483.

The proof is based on the argument by Minsky-Moriah-Schleimer.

c.f.) High distance knots,

Algebr. Geom. Topol. 7 (2007), 1471-1483.

Key lemma. [Hempel (2001)]

Suppose $X, Y \subset \mathcal{C}(S)$.

 $\overline{X}, \overline{Y}$: closures of X, Y in $\mathcal{PML}(S)$.

 Φ : a pseudo-Anosov map with stable/unstable laminations λ^{\pm} .

 $\lambda^- \not\in \overline{Y} ext{ and } \lambda^+ \not\in \overline{X} \Longrightarrow \operatorname{d}(X, \Phi^n(Y)) o \infty ext{ as } n o \infty.$

 $S^3 = V \cup_S W$: a standard Heeg. splitting.

 $S^3 = V \cup_S W$: a standard Heeg. splitting. V' := V - Nbd(Red Spine).

Then $V' \cup_S W$ is a Heeg. splitting of a handlebody.

 $S^3 = V \cup_S W$: a standard Heeg. splitting. V' := V - Nbd(Red Spine).Then $V' \cup_S W$ is a Heeg. splitting of a handlebody.

D: a disk cutting off a solid torus V'' from V'.

 $S^3 = V \cup_S W$: a standard Heeg. splitting. V' := V - Nbd(Red Spine).Then $V' \cup_S W$ is a Heeg. splitting of a handlebody. D: a disk cutting off a solid torus V'' from V'. $S_0 := \text{cl}(S - V'').$ $V'_0 := V' - \text{Nbd}(\text{Core of } V'').$

 $S^3 = V \cup_S W$: a standard Heeg. splitting. V' := V - Nbd(Red Spine).Then $V' \cup_S W$ is a Heeg. splitting of a handlebody. D: a disk cutting off a solid torus V'' from V'. $S_0 := cl(S - V'').$ $V'_0 := V' - Nbd(Core of V'').$

Need to find a "nice" pseudo-Anosov map on S extending over $V^\prime.$

As Minsky-Moriah-Schleimer did, we take pants decompositions \mathcal{P}, \mathcal{Q} as follows.

As Minsky-Moriah-Schleimer did, we take pants decompositions \mathcal{P}, \mathcal{Q} as follows.

As Minsky-Moriah-Schleimer did, we take pants decompositions \mathcal{P}, \mathcal{Q} as follows.

As Minsky-Moriah-Schleimer did, we take pants decompositions \mathcal{P}, \mathcal{Q} as follows.

Claim 1. (Minsky-Moriah-Schleimer)

There is a meridian a of V' obtained from a band-sum on two copies of a meridian of V'' s.t. a traverses all seams of \mathcal{P} and \mathcal{Q} respectively.

<u>Claim 2.</u> There are two meridians b, c of V' s.t. $b \cup c$ fills S.

<u>Claim 2.</u> There are two meridians b, c of V' s.t. $b \cup c$ fills S.

filled by $b_0 \cup c_0$

filled by $x \cup y$

<u>Claim 2.</u> There are two meridians b, c of V' s.t. $b \cup c$ fills S.

filled by $b_0 \cup c_0$

filled by $x \cup y$

b: a "good" band sum of two copies of b_0 along x. **c**: a "good" band sum of two copies of c_0 along y.
<u>Claim 3.</u> (Minsky-Moriah-Schleimer) $\Phi_N := \tau_a^N \circ (\tau_b \circ \tau_c^{-1}) \circ \tau_a^{-N} (N \gg 0)$ satisfies the assumption of Key lemma.

<u>Claim 3.</u> (Minsky-Moriah-Schleimer) $\Phi_N := \tau_a^N \circ (\tau_b \circ \tau_c^{-1}) \circ \tau_a^{-N} (N \gg 0)$ satisfies the assumption of Key lemma.

Since $b \cup c$ fills S, $\tau_b \circ \tau_c^{-1}$ is p.A. with stable/unstable laminations, say λ_0^{\pm} .

<u>Claim 3.</u> (Minsky-Moriah-Schleimer) $\Phi_N := \tau_a^N \circ (\tau_b \circ \tau_c^{-1}) \circ \tau_a^{-N} (N \gg 0)$ satisfies the assumption of Key lemma.

Since $b \cup c$ fills S, $\tau_b \circ \tau_c^{-1}$ is p.A. with stable/unstable laminations, say λ_0^{\pm} . The stable/unstable laminations of Φ_N are $\lambda_N^{\pm} = \tau_a^N(\lambda_0^{\pm})$.

<u>Claim 3.</u> (Minsky-Moriah-Schleimer) $\Phi_N := \tau_a^N \circ (\tau_b \circ \tau_c^{-1}) \circ \tau_a^{-N} (N \gg 0)$ satisfies the assumption of Key lemma.

Since $b \cup c$ fills S, $\tau_b \circ \tau_c^{-1}$ is p.A. with stable/unstable laminations, say λ_0^{\pm} . The stable/unstable laminations of Φ_N are $\lambda_N^{\pm} = \tau_a^N(\lambda_0^{\pm})$. Since $a \cap \lambda_0^{\pm} \neq \emptyset$, $\lambda_N^{\pm} \to [a]$ in $\mathcal{PML}(S)$.

<u>Claim 3.</u> (Minsky-Moriah-Schleimer) $\Phi_N := \tau_a^N \circ (\tau_b \circ \tau_c^{-1}) \circ \tau_a^{-N} (N \gg 0)$ satisfies the assumption of Key lemma.

Since $b \cup c$ fills S, $\tau_b \circ \tau_c^{-1}$ is p.A. with stable/unstable laminations, say λ_0^{\pm} . The stable/unstable laminations of Φ_N are $\lambda_N^{\pm} = \tau_a^N(\lambda_0^{\pm})$. Since $a \cap \lambda_0^{\pm} \neq \emptyset$, $\lambda_N^{\pm} \to [a]$ in $\mathcal{PML}(S)$. Since a traverses all seams of \mathcal{P} and \mathcal{Q} , $\lambda_N^+ \notin \mathcal{D}(V_0')$ and $\lambda_N^- \notin \mathcal{D}(W)$ for $N \gg 0$.

<u>Claim 3.</u> (Minsky-Moriah-Schleimer) $\Phi_N := \tau_a^N \circ (\tau_b \circ \tau_c^{-1}) \circ \tau_a^{-N} (N \gg 0)$ satisfies the assumption of Key lemma.

Since $b \cup c$ fills S, $\tau_b \circ \tau_c^{-1}$ is p.A. with stable/unstable laminations, say λ_0^{\pm} . The stable/unstable laminations of Φ_N are $\lambda_N^{\pm} = \tau_a^N(\lambda_0^{\pm})$. Since $a \cap \lambda_0^{\pm} \neq \emptyset$, $\lambda_N^{\pm} \to [a]$ in $\mathcal{PML}(S)$. Since a traverses all seams of \mathcal{P} and \mathcal{Q} , $\lambda_N^+ \not\in \mathcal{D}(V_0')$ and $\lambda_N^- \notin \mathcal{D}(W)$ for $N \gg 0$.

Theorem 2.

$egin{aligned} &orall g\in\mathbb{Z}_{\geq1},\ orall n\in\mathbb{Z}_{\geq2},\ orall t_1,orall t_2\in\mathbb{Z}_{\geq0},\ \exists K=T_1\cup T_2: \mathsf{a}\ &(g,n) ext{-tangle decomposition s.t. } \operatorname{tnl}(T_1)=t_1,\ \operatorname{tnl}(T_2)=t_2 ext{ and}\ &\operatorname{tnl}(K)=\operatorname{tnl}(T_1)+\operatorname{tnl}(T_2)+g+2n-1. \end{aligned}$

Theorem 2.

 $egin{aligned} &orall g\in\mathbb{Z}_{\geq1},\ orall n\in\mathbb{Z}_{\geq2},\ orall t_1,orall t_2\in\mathbb{Z}_{\geq0},\ \exists K=T_1\cup T_2: \mathsf{a}\ &(g,n) ext{-tangle decomposition s.t. } \operatorname{tnl}(T_1)=t_1,\ \operatorname{tnl}(T_2)=t_2 ext{ and}\ &\operatorname{tnl}(K)=\operatorname{tnl}(T_1)+\operatorname{tnl}(T_2)+g+2n-1. \end{aligned}$

Remark.

If a generalized tangle contains an *essential* surface, its Euler characteristic bounds distance from above.

 $(M^3, K) = (V_1, T_1) \cup_{P} (V_2, T_2)$ **F**: a minimal genus Heegaard surface of (M^3, K) .

Proposition.

 $oldsymbol{F}$ is weakly reducible.

Proposition.

 $oldsymbol{F}$ is weakly reducible.

(proof)

Kobayashi-Qiu's argument : otherwise, $F \cap V_1$ or $F \cap V_2$ is essential. Essential surfaces bound distance from above, a contradiction.

Proposition.

F is the amalgamation of S_1 and S_2 .

Proposition.

 $m{F}$ is the amalgamation of $m{S_1}$ and $m{S_2}.$

(proof) Since F is weakly reducible, (M^3, K) admits a generalized bridge surface by (c-)weak reduction.

Proposition.

 $m{F}$ is the amalgamation of $m{S_1}$ and $m{S_2}.$

(proof) Since F is weakly reducible, (M^3, K) admits a generalized bridge surface by (c-)weak reduction. If there is an essential surface not ambient isotopic to P, then it again bounds distance, a contradiction.

Proposition.

F is the amalgamation of S_1 and S_2 .

(proof) Since F is weakly reducible, (M^3, K) admits a generalized bridge surface by (c-)weak reduction. If there is an essential surface not ambient isotopic to P, then it again bounds distance, a contradiction. Hence P is the only essential surface. This implies the conclusion.