Motivic Lie algebra and cohomology of moduli spaces of graphs and curves

Shigeyuki MORITA

based on jw/w Takuya SAKASAI and Masaaki SUZUKI

October 30, 2018

Shigeyuki MORITA Motivic Lie algebra and cohomology of moduli spaces

- Motivic Lie algebra f
- Appearance of f in Johnson cokernel
- Solution Appearance of \mathfrak{f} in $H^*(\mathbf{M}_q)$ (moduli space of curves)
- Kontsevich graph homology
- Disproof of a conjecture of Kontsevich
- Morita classes and their conjectural relation with f
- Ø Bird's eye view

Motivic Lie algebra (or fundamental Lie algebra)

 $\mathfrak{f} = \operatorname{FreeLie}\langle \sigma_3, \sigma_5, \sigma_7, \cdots \rangle$ (Soulé elements)

plays important roles in number theory

 $\sigma_{2k+1} \sim H^1(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \mathbb{Z}_p(2k+1)) \cong \mathbb{Z}_p$ (p: prime)

Soulé *p*-adic regulator

Recently, it also appears in many branches of mathematics

related to number theory, such as topology,

mathematical physics,...

Appearance of f in Johnson cokernel (1)

The mapping class group of $\Sigma_{g,1}$ relative to the boundary

Theorem (Dehn-Nielsen-Zieschang)

 $\mathcal{M}_{g,1} \cong \{ \varphi \in \operatorname{Aut} \pi_1 \Sigma_{g,1}; \varphi(\zeta) = \zeta \} \quad \zeta : boundary$

"differentiate"
$$\Rightarrow$$
 "Lie algebra" of $\mathcal{M}_{g,1}$ —
 $\mathfrak{h}_{g,1} = \{ \text{symplectic derivation of FreeLie} \langle H \rangle \}$

defined over $\mathbb Z,$ but here we consider it over $\mathbb Q$

introduced by Johnson in his beautiful works on the Torelli

```
group during (1979 ~1985)
```

Appearance of f in Johnson cokernel (2)

The action of $\mathcal{M}_{g,1}$ on the lower central series of $\pi_1 \Sigma_{g,1}$

- \Rightarrow Johnson filtration $\{\mathcal{M}_{g,1}(k)\}_k$
- \Rightarrow embedding of Lie algebras (Johnson homomorphism)

$$\tau: \bigoplus_{k=1}^{\infty} \mathcal{M}_{g,1}(k) / \mathcal{M}_{g,1}(k+1) \stackrel{\subset}{\longrightarrow} \mathfrak{h}_{g,1}^+$$

Determination of $\operatorname{Im} \tau \subset \mathfrak{h}_{g,1}^+$: very important problem,

fundamental results :

$$\operatorname{Im} \tau(1) \cong \wedge^{3} H \quad (\operatorname{Johnson})$$
$$\operatorname{Im} \tau \otimes \mathbb{Q} = \langle \wedge^{3} H \otimes \mathbb{Q} \rangle \subset \mathfrak{h}_{g,1}^{+} \otimes \mathbb{Q} \quad (\operatorname{Hain})$$

Appearance of f in Johnson cokernel (3)

Johnson cokernel $= \mathfrak{h}_{g,1}^+ / \mathrm{Im} \, \tau$

Determination of $\operatorname{Im} \tau \subset \mathfrak{h}_{g,1}^+$ =

determination of Johnson cokernel

First, around the end of 1980's, a surjective homomorphism

trace :
$$\mathfrak{h}_{g,1}^+ \twoheadrightarrow \bigoplus_{k=1}^{\infty} S^{2k+1} H_{\mathbb{Q}}$$

was constructed such that it vanishes on ${\rm Im}\,\tau$ (M.)

I have (too optimistically) conjectured that $\wedge^3 H_{\mathbb{Q}}$ and the trace

components $S^{2k+1}H_{\mathbb{Q}}$ will generate the Lie algebra $\mathfrak{h}_{q,1}^+$

It turned out that, this is not the case due to remarkable works of Conant-Kassabov-Vogtmann (hairy graphs) and Bartholdi

On the other hand, as for the Johnson cokernel, a series of

results starting from the works of Nakamura as well as

Matsumoto proving a certain conjecture of Oda:

arithmetic mapping class group:

$$1 \ \rightarrow \ \widehat{\mathcal{M}_g^1} \ \rightarrow \ \pi_1^{\mathrm{alg}} \left(\mathbf{M}_g^1 / \mathbb{Q} \right) \ \rightarrow \ \mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \ \rightarrow \ 1$$

"Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) should appear in the Sp-invariant part

of the Johnson cokernel"

until the definitive work of Brown in 2010, it is now known that

there exists an embedding

$$\mathfrak{f} \subset \mathsf{Johnson \ cokernel} : (\mathfrak{h}_{g,1}^+/\mathrm{Im}\, au)^{\mathrm{Sp}}$$

These results are based on the fundamental theories of

Grothendieck, Drinfeld, Ihara, Deligne

After this, there appeared many important results about the

Johnson cokernel:

Enomoto-Satoh map (at present, the best result)

Conant-Kassabov (Hopf algebra)

Sakasai-Suzuki-M. : general theory for the structure of

 $(\mathfrak{h}_{g,1})^{\mathrm{Sp}}$ +canonical metric on the space of Sp -invariant

tensors \Rightarrow determined Im $\tau \otimes \mathbb{Q}$ completely up to degree 6

Kawazumi-Kuno (Lie bialgebra)

However, both the problems of determining

Johnson cokernel and a system of generators for $\mathfrak{h}_{a,1}^+$

remain completely open (despite of many known results...)

Theorem (Chan-Galatius-Payne)

There exists a surjection

 $H^{4g-6}(\mathbf{M}_g; \mathbb{Q}) \to \mathfrak{grt}(2g) \supset \mathfrak{f}(2g)$

 $\Rightarrow H^{4g-6}(\mathbf{M}_g; \mathbb{Q}) \neq 0$ for g = 3, 5 or $g \geq 7$ and

 $\dim H^{4g-6}(\mathbf{M}_g;\mathbb{Q}) > \beta^g + \textit{constant} \quad \textit{for any } \beta < \beta_0$

where $\beta_0 = 1.3247...$ is the real root of $t^3 - t - 1 = 0$

all the above cohomology classes are unstable classes

(beyond Harer stable range) and before this result,

only the following two unstable classes were known:

Appearance of f in $H^*(\mathbf{M}_g)$ (moduli space of curves) (2)

Looijenga: $H^6(\mathbf{M}_3; \mathbb{Q}) \cong \mathbb{Q}$ and Tommasi: $H^5(\mathbf{M}_4; \mathbb{Q}) \cong \mathbb{Q}$

On the other hand

Theorem (Harer)

For any $g \geq 2$

$$\operatorname{vcd}(\mathcal{M}_g) = 4g - 5 \Rightarrow H^k(\mathbf{M}_g; \mathbb{Q}) = 0 \text{ for all } k > 4g - 5$$

Theorem (Sakasai-Suzuki-M., Church-Farb-Putman)

 $H^{4g-5}(\mathbf{M}_g; \mathbb{Q}) = 0$

Appearance of f in $H^*(\mathbf{M}_g)$ (moduli space of curves) (3)

Problem

Construct explicit cocycles for the classes in $H^{4g-6}(\mathbf{M}_g; \mathbb{Q})$ guaranteed by the above result of Chan-Galatius-Payne Lie version of Kontsevich graph homology

Theorem (Kontsevich, Lie version)

There exists an isomorphism

$$PH_c^k(\widehat{\mathfrak{h}}_{\infty,1})_{2n} \cong H_{2n-k}(\operatorname{Out} F_{n+1}; \mathbb{Q}) \quad (n \ge 1)$$

$$\widehat{\mathfrak{h}}_{\infty,1}:$$
 completion of $\mathfrak{h}_{\infty,1}=\displaystyle{\displaystyle{\lim_{g o\infty}}}\mathfrak{h}_{g,1}$

$$\bigoplus_{n\geq 2} H_*(\operatorname{Out} F_n; \mathbb{Q}) \Leftrightarrow PH_c^*(\widehat{\mathfrak{h}}_{\infty,1})$$

equivalent!

associative version of Kontsevich graph homology

Theorem (Kontsevich, associative version)

There exists an isomorphism

$$PH_c^k(\widehat{\mathfrak{a}}_{\infty})_{2n} \cong \bigoplus_{2g-2+m=n,m>0} H_{2n-k}(\mathbf{M}_g^m; \mathbb{Q})^{\mathfrak{S}_m} \quad (n \ge 1)$$

 $\widehat{\mathfrak{a}}_{\infty}:$ completion of $\mathfrak{a}_{\infty}=\displaystyle{\lim_{g o\infty}}\mathfrak{a}_{g}$

$$\bigoplus_{2g-2+m=n,m>0} H_{2n-k}(\mathbf{M}_g^m; \mathbb{Q})^{\mathfrak{S}_m} \Leftrightarrow PH_c^*(\widehat{\mathfrak{a}}_{\infty})$$

equivalent!

associative version of Kontsevich graph homology

Theorem (Kontsevich, associative version)

There exists an isomorphism

$$PH_k(\mathfrak{a}_{\infty})_{2n} \cong \bigoplus_{2g-2+m=n,m>0} H^{2n-k}(\mathbf{M}_g^m; \mathbb{Q})^{\mathfrak{S}_m} \quad (n \ge 1)$$

$$\bigoplus_{g \ge 0, m > 0} H^{4g - 6 + 2m}(\mathbf{M}_g^m; \mathbb{Q})^{\mathfrak{S}_m} \Leftrightarrow PH_2(\mathfrak{a}_\infty)$$

equivalent!

Disproof of a conjecture of Kontsevich (1)

```
Theorem [Chan-Galatius-Payne] +
```

Theorem [Kontsevich, associative] \Rightarrow

 $\dim H_2(\mathfrak{a}_{\infty}) = \infty$

This disproves (!) the associative case of the following conjecture

```
Conjecture (Kontsevich)
```

For any k, the k-th homology group of each of the infinite dimensional Lie algebras

 $\mathfrak{c}_{\infty},\ \mathfrak{a}_{\infty},\ \mathfrak{l}_{\infty}$ $\ (\mbox{commutative, associative, lie})$

is finite dimensional.

Disproof of a conjecture of Kontsevich (2)

Kontsevich mentioned that

$$\dim H_2(\mathfrak{c}_{\infty}) = 1$$

On the other hand, I have constructed a series of elements

$$\mathbf{t}_{2k+1} \in H^2(\mathfrak{h}_{g,1})_{4k+2} \ (k=1,2,\ldots)$$

by making use of the trace map

trace :
$$\mathfrak{h}_{g,1} \to S^{2k+1} H_{\mathbb{Q}}$$

and conjectured that all of these classes are non-trivial

Since

 $\mathfrak{h}_{\infty,1}=\mathfrak{l}_{\infty}\quad (\text{the LHS appeared before the RHS}),$

the above conjecture (non-triviality of the classes t_{2k+1}) implies

 $\dim H_2(\mathfrak{l}_\infty) = \infty$

which would disprove the lie version of Kontsevich's conjecture

Since the structure of \mathfrak{l}_∞ seems much richer that that of \mathfrak{a}_∞

Theorem [Chan-Galatius-Payne] should be a strong supporting

evidence for the non-trivialities of the following classes

Disproof of a conjecture of Kontsevich (4)

$$H^2(\mathfrak{h}_{\infty,1})_{4k+2} \ni \mathbf{t}_{2k+1} \iff \mu_k \in H_{4k}(\operatorname{Out} F_{2k+2}; \mathbb{Q})$$

Morita classes

At present, only the first three classes

 μ_1, μ_2, μ_3

are known to be non-trivial

due to M., Conant-Vogtmann, Gray:

Theorem (non-triviality of μ_k)

 $\mu_2 \neq 0 \in H_8(\operatorname{Out} F_6; \mathbb{Q})$ (Conant-Vogtmann 2004)

 $\mu_3 \neq 0 \in H_{12}(\operatorname{Out} F_8; \mathbb{Q}) \quad (Gray \ 2011)$

very interesting general property of the classes μ_k :

Theorem (Conant-Hatcher-Kassabov-Vogtmann, 2015)

The class μ_k can be represented by the fundamental cycle

of a certain abelian subgroup $\mathbb{Z}^{4k} \subset \operatorname{Out} F_{2k+2}$

It is now known that

there exists an embedding

```
\mathfrak{f} \subset \mathsf{Johnson} \ \mathsf{cokernel} : (\mathfrak{h}_{q,1}^+/\mathrm{Im}\, 	au)^{\mathrm{Sp}}
```

I thought first that the Galois image might serve as new

generators for $\mathfrak{h}_{q,1}^+$, namely they will survive in the abelianization

 $H_1(\mathfrak{h}_{g,1}^+)$

but soon I became to conjecture that they should be

represented by brackets of the trace components:

Morita classes and their conjectural relation with f(2)

$$\mathfrak{h}_{g,1}(2k+1) \supset (\text{unique by Nakamura})S^{2k+1}H_{\mathbb{Q}} \xrightarrow{\sim} S^{2k+1}H_{\mathbb{Q}}$$

Conjecture

$$(\wedge^2 S^{2k+1} H_{\mathbb{Q}})^{\operatorname{Sp}} \cong \mathbb{Q} \ni 1 \xrightarrow{[\,,\,]} \sigma_{2k+1}^{\operatorname{top}} \in \mathfrak{h}_{g,1}(4k+2) \text{ Galois image ?}$$

unsolved, but Hain told that he has some progress concerning

the above conjecture in his joint work with Brown

Conjecture

The bracket operation

$$\sum_{i=1}^{2k} \mathfrak{h}_{g,1}(i) \otimes \mathfrak{h}_{g,1}(4k+2-i) \xrightarrow{[\,,\,]} \mathfrak{h}_{g,1}(4k+2)$$

hits the element $\sigma_{4k+2}^{\text{top}} \in \mathfrak{h}_{g,1}(4k+2)$

If this conjecture is true \Rightarrow $\mathbf{t}_{2k+1} \neq 0 \Rightarrow \mu_k \neq 0$

If the above two conjectures are true,

then we can say that the Galois images $\subset (\mathfrak{h}_{g,1}/\mathrm{Im}\,\tau)^{\mathrm{Sp}}$

and the classes μ_k are very closely related

2k+1	1	3	5	• • •
weight $(4k+2)$	2	6	10	• • •
generators of $\mathfrak{h}_{g,1}, \sqrt{Galois}$	$\Lambda^3 H/H$	S^3H	S^5H	•••
period	$\zeta(1)$	$\zeta(3)$	$\zeta(5)$	•••
Soulé (Galois image)		σ_3	σ_5	•••
$H^2(\mathfrak{h}_{\infty,1})_{4k+2}$	e_1	\mathbf{t}_3	\mathbf{t}_5	• • •
$H_{4k}(\operatorname{Out} F_{2k+2})$		μ_1	μ_2	• • •
$H^{8k-2}(\mathbf{M}_{2k+1})$		$H^6(\mathbf{M}_3)$	$H^{14}(\mathbf{M}_5)$	• • •

 $\mathfrak{h}_{g,1}(2k+1) \supset S^{2k+1}H_{\mathbb{Q}}$ (trace component)

$$(\wedge^2 S^{2k+1} H_{\mathbb{Q}})^{\operatorname{Sp}} \cong \mathbb{Q} \xrightarrow{[\,,\,]} \sigma_{2k+1}^{\operatorname{top}} \in \mathfrak{h}_{g,1}(4k+2) \text{ Galois image ?} \\ \mapsto \mathbf{t}_{2k+1} \in H^2(\mathfrak{h}_{g,1})_{4k+2} \cong \mu_k \in H_{4k}(\operatorname{Out} F_{2k+2}) \\ \mapsto \tilde{\mathbf{t}}_{2k+1} \in H^2(\mathcal{H}_{g,1}^{\operatorname{top}})_{4k+2} \to H^2(\mathcal{H}_{g,1}^{\operatorname{smooth}})_{4k+2}$$