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Motivation

Purpose

Determine the asymptotic behavior of the sequcence given by

R-torsion for graph manifolds.

(i.e., the order of growth and the limit of leading coefficient)

We need to know

◮ representation space for a graph manifold

◮ contribution of each Seifert piece

in the asymptotic behavior of R-torsion

We focus on graph manifolds obtained by exceptional surgeries

along a hyperbolic knot.



Graph manifolds

JSJ decomposition

Assume that a closed 3-manifold M is

connected orientable and irreducible.

We have the decomposition

M = M1 ∪T 2 . . . ∪T 2 Mk (JSJ decompo.)

where each T 2 is imcompressible.

Graph manifold

M is called a graph manifold

if M is not Seifert fibered and the JSJ decomposition of M

M = M1 ∪T 2 . . . ∪T 2 Mk

has only Seifert fibered spaces Mi .



Exceptional surgery along a hyperbolic knot

Set

EK = S3 \ Int N(K ): the knot exterior of a knot K

m = a meridian ⊂ ∂EK

ℓ = a preferred longitude ⊂ ∂EK

p/q-surgery along K

We have

S3
K (p/q) = EK ∪p/q D2 × S1,

identifying ∂D2 × {∗} ∼ p m + q ℓ on ∂EK = T 2.

Toroidal surgery

p/q-surgery is called toroidal

if K is hyperbolic & ∃incompressibleT 2 ⊂ S3
K (p/q).

S3
K (p/q) is a graph manifold ⇒ p/q-surgery must be toroidal.



Examples of toroidal surgery

Assume that an incompressible surface S ⊂ EK is

◮ an once punctured Klein bottle or

◮ an once punctured torus.

If D2 × {∗} ∼ p/q = ∂S then

◮ ∂N(S ∪ D2 × {∗}) or

(N(S ∪ D2 × {∗}) is the twisted I-b’dle over Klein bottle)

◮ S ∪ D2 × {∗}

is an incompressible torus in S3
K (p/q).



Toroidal surgeries along two–bridge hyperbolic knots

Classification by M. Brittenham and Y.-Q. Wu

Assume that K is a two–bridge knot.

(1)
K = a twist knot K [2n,±2] and

p/q = 0/1 or p/q = ∓4;

(2) K = K [b1,b2](|b1|, |b2| > 2) and

p/q = 0/1 (b1 &b2: even), p/q = 2b2/1 (b1:odd, b2: even)



Toroidal surgeries yielding graph manifolds

Graph manifolds including torus knot exteriors (R. Patton,
A. Clay, M. Teragaito)

(1) The twist knot K [2n,±2] & p/q =
±4 yields

M = ET (2,2n+1) ∪T 2 N(Klein bottle).

(2) The two–bridge knot K [b1,b2] & p/q = 2b2/1 yields

M = ET (2,2b1+1) ∪T 2 N(Klein bottle) ∪T 2 Cable space

= ET (2,2b1+1) ∪T 2 N(Klein bottle) ∪A D2 × S1

where A is an annulus.



Reidemeister torsion for a CW–complex

Definition (R-trosion Tor(W ; ρ))

W : a finite CW-complex,

ρ : π1(W ) → GLn(C) : GLn(C)-representation of π1

C∗(W ;Cn
ρ) : local system given by ρ

= C
n ⊗ρ C∗(W̃ ;Z[π1]) (W̃ :universal cover)

v ⊗ γσ = ρ(γ)−1v ⊗ σ

Under H∗(W ;Cn
ρ) = 0,

Tor(W ; ρ) :=
∏

i≥0

det(∂b
i+1 ∪ b

i/c
i)(−1)i+1

via the decomposition

Ci(W ;Cn
ρ) = Ker ∂i ⊕ (a lift of Im ∂i ) = Im ∂i+1 ⊕ (a lift of Im ∂i )



R-torsion for the Klein bottle

ρ : π1(Kb) = 〈x , y | yx = xy−1〉 → SL2(C)

X := ρ(x) and Y := ρ(y) s.t . tr ρ(y) 6= 2

0 → C2 ≃ C
2 ∂2−→ C1 ≃ C

2 ⊕ C
2 ∂1−→ C0 ≃ C

2 → 0

∂2 =

(
1 − Y−1

−(YX )−1 − 1

)
, ∂1 =

(
X−1 − 1 Y−1 − 1

)

Then Tor(Kb; ρ) =
det(1 − Y−1)

det(Y−1 − 1)
= 1



Indeterminacy of R-torsion

R-torsion for general ρ : π1(W ) → GLn(C)

Tor(W ; ρ) :=
∏

i≥0

det(∂b
i+1 ∪ b

i/c
i)(−1)i+1

∈ C
∗ = C \ {0}

is defined up to a factor ± det(ρ(γ)) (γ ∈ π1(W )).

i.e. Tor(W ; ρ) ∈ C
∗/{± det(ρ(γ)) | γ ∈ π1(W )}

For SL2N(C)-representations ρ : π1(W ) → SLn(C)

Tor(W ; ρ) ∈ C has no indeterminacy,

i.e. Tor(W ; ρ) ∈ C
∗.



Sequence of R-torsion for SL2N(C)-reps.

Sequence of indeuced SLn(C)-representations

An SL2(C)-representation ρ : π1(W ) → SL2(C) induces

ρn = σn ◦ ρ : π1(W )
ρ
−→ SL2(C)

σn−→ SLn(C)

for ∀n ∈ N.

Here σn is given by the action of SL2(C) on

Vn = {p(x , y) |homog.,deg p(x , y) = n − 1} as
(

a b

c d

)
· p(x , y) = p(

(
a b

c d

)−1 (
x

y

)
) = p(dx − by ,−cx + ay)

Sequence of R-torsion

For ρ : π1(W ) → SL2(C), there exists a sequence

Tor(W ; ρ2) = Tor(W ; ρ),Tor(W ; ρ4), . . . Tor(W ; ρ2N ), . . . ∈ C
∗



Asymptotic behavior for a Hyperbolic manifold

W. Müller, P. Menal–Ferrer & J. Porti

M: a hyperbolic 3-manifold of finite volume

lim
N→∞

log |Tor(M;σN ◦ hol)|

N2
=

Vol(M)

4π

where Vol(M): hyperbolic volume of M.

Remark
Tor(M;σN ◦ hol) is the inverse in their conventions.



Previous work on the asymptotics of R-torsion

Asymptotic behavior for a Seifert fibered space (Y)

M: a Seifert fibered space with m exceptional fibers

lim
N→∞

log |Tor(M; ρ2N)|

(2N)2
= 0

lim
N→∞

log |Tor(M; ρ2N)|

2N
= log |Tor(regular fiber; ρ)|−χ′

ρ2N = σ2N ◦ ρ : π1(M)
ρ
−→ SL2(C)

σ2N−−→ SL2N(C)

s.t . regular fiber 7→ −1 7→ −12N ,

g : the genus of the base orbifold,

2λj : the order of the SL2(C)-matrix corresponding to

j-th exceptional fiber



Previous work on the asymptotics of R-torsion

Asymptotic behavior for a Seifert fibered space (Y)

M: a Seifert fibered space with m exceptional fibers

lim
N→∞

log |Tor(M; ρ2N)|

(2N)2
= 0

lim
N→∞

log |Tor(M; ρ2N)|

2N
= −


2 − 2g −

m∑

j=1

λj − 1

λj


 log 2

ρ2N = σ2N ◦ ρ : π1(M)
ρ
−→ SL2(C)

σ2N−−→ SL2N(C)

s.t . regular fiber 7→ −1 7→ −12N ,

g : the genus of the base orbifold,

2λj : the order of the SL2(C)-matrix corresponding to

j-th exceptional fiber



Asymptotic behavior for a torus knot exterior

T (p,q): the torus knot of type (p,q)

There exists

ρ : π1(ET (p,q)) → SL2(C) irreducible& ρ(regular fiber) = −1.

The asymptotic behavior of R-torsion

lim
N→∞

|Tor(ET (p,q); ρ2N)|

2N
=

(
1 −

1

p′
−

1

q′

)
log 2

where p′ and q′ are divisors of p and q respectivily.

In particular,

the maximum of lim
N→∞

|Tor(ET (p,q); ρ2N)|

2N
=

(
1 −

1

p
−

1

q

)
log 2



Main results
M = S3

K (4) for K = K[2n,−2] (n 6= 0,−1).

M = Exterior of T (2,2n + 1) ∪ twisted I–b’dle over Klein bottle

Theorem (A. T. Tran and Y.)

Every irreducible ρ : π1(M) → SL2(C) is induced by metabelian

representation of π1(EK ).

lim
N→∞

log |Tor(M; ρ2N)|

2N
=

1

r
(log |∆T (2,2n+1)(−1)| − log 2)

where r > 1 is a divisor of |∆K (−1)|.
In particular,

the minimum of lim
N→∞

log |Tor(M; ρ2N)|

2N

=
1

|∆K (−1)|
(log |∆T (2,2n+1)(−1)| − log 2).



Our approach

Set M = M1 ∪ M2 where

M1 = ET (2,2n+1) torus knot exteriror

M2 = twisted I-bundle over the Klein bottle

Then

Tor(M; ρ2N) = Tor(M1; ρ2N) · Tor(M2; ρ2N)

Contribution of each Seifert piece

◮ ρ|π1(M1): abelian and ρ(regular fiber) 6= −1;

◮ ρ|π1(M2): irreducible and Tor(M2; ρ2N) = 1 (∀N)

Hence

lim
N→∞

log |Tor(M; ρ2N)|

2N
= lim

N→∞

log |Tor(M1; ρ2N)|

2N



Surgery and Representations

Induced representation ρ : π1(M) → SL2(C)

M: resulting manifold by 4-surgery along K

π1(EK ) SL2(C)

π1(M) = π1(EK ) / 〈〈m
4ℓ〉〉

ρ

ρ̄

Therefore

ρ(m4ℓ) = 1 ⇔ ρ̄ is induced

Representation space R(M) = {ρ : π1(M) → SL2(C)}

Rirr(M) = {ρ ∈ Rirr(EK ) | ρ(m
4ℓ) = 1}

Here “irr” means irreducible representations.



Equivalent condition for ρ ∈ Rirr(EK ) (K = K[2n,−2])

ρ(m4ℓ) = 1 ⇔ tr ρ(m) = 0

(⇐) For any two–bridge knot K , by F. Nagasato & Y.

tr ρ(m) = 0 ⇔ ρ(m)
conj.
∼

(
0 −1

1 0

)
, ρ(ℓ) = 1

⇒ ρ(m4ℓ) = 1

(⇒) M±1, L±1: eigenvalues of ρ(m), ρ(ℓ).
From M4L = 1 and the recursive formula of A-polynomial

A(M,L) = 0 by J. Hoste & P. Shanahan, one can see that

A(M,M−4) =

{
M−8n+3(M+M−1)2n−1 (n > 0)

M−8|n|(M+M−1)2|n| (n < 0).

Hence tr ρ(m) = M+M−1 = 0.



The subset Rirr(M) in Rirr(EK )

Rirr(M) consists of metabelian representations

K = K [2n,−2] and M = S3
K (4)

Rirr(M) = {ρ ∈ Rirr(EK ) | ρ(m)4ρ(ℓ) = 1}

= {ρ ∈ Rirr(EK ) | tr ρ(m) = 0}

= {ρ ∈ Rirr(EK ) | ρ: metabelian}

Definition of metabelian representation

ρ : π1(EK ) → SL2(C) is called metabelian

if ρ([π1(EK ), π1(EK )]) ⊂ SL2(C): abelian.

i.e., if γ1, γ2 ∈ π1(EK ) are null–homologous,

then ρ(γ1) and ρ(γ2) are commutative.



Restrictions of an SL2(C)-representation

Restriction to π1(Torus knot exterior)

Since γ ⊂ ET (2,2n+1) ⊂ S3 \ Klein bottle,

(∂ Klein bottle = K [2n,−2])

α(γ) = Lk(γ,K [2n,−2]) ∈ 2Z

ρ(γ) = ρ(mα(γ) · m−α(γ)γ)

= ±1 · ρ(m−α(γ)γ)

∈ ρ([π1(K[2n,−2]), π1(K [2n,−2]]))

Then ρ|π1(ET (2,2n+1)) is abelian.

Restriction to π1(twisted I-b’dle over Klein bottle)

ρ|π1(M2) is irreducible from the irreducibility of ρ.



R-torsion for 2N-dim representations

Multiplicativity of R-torsion

In Tor(M; ρ2N) = Tor(M1; ρ2N) · Tor(M2; ρ2N),

Tor(M1; ρ2N) =

∏N
k=1 ∆T (2,2n+1)(ζ

2k−1)∆31
(ζ−2k+1)

∏N
k=1(ζ

2k−1 − 1)(ζ−2k+1 − 1)

Tor(M2; ρ2N) = 1

where

M1 : torus knot exterior, M2 : twisted I-b’dle over Klein bottle and

ζ±1: the eigenvalues of ρ(µ) for a meridian in M1 = ET (2,2n+1).

Remark
∃divisor r of |∆K [2n,−2](−1)| s.t. the order of ρ(µ) is given by 2r .

i.e., ζ is a 2r -th root of unity.



The asymptotic behavior for a graph manifold

Theorem (the limit of leading coefficient)

lim
N→∞

log |Tor(M; ρ2N )|

2N

= lim
N→∞

log |Tor(M1; ρ2N)|

2N
+ lim

N→∞

log |Tor(M2; ρ2N)|

2N

= lim
N→∞

log |
∏N

k=1 ∆T (2,2n+1)(ζ
2k−1)∆31

(ζ−2k+1)|

2N

− lim
N→∞

log |
∏N

k=1(ζ
2k−1 − 1)(ζ−2k+1 − 1)|

2N

=
1

r
log |∆T (2,2n+1)(−1)| −

1

r
log 2

Note

∆T (2,q)(t) =
tq + 1

t + 1


