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Overview

• Goal
• M oriented hyperbolic 3-manifold, vol(M) <∞, one cusp
• ρ : π1M → SL2(C) a representation
• The Reidemeister torsion τ(M, ρ) is invariant by conjugation of
ρ, and defines a function

X (M) = hom(π1M,SL2(C)// SL2(C) 99K C

that we want to study

• Plan of the talk:

1. Tools: Reidemeister torsion, variety of characters, aciclicity
2. The torsion function X (M) 99K C
3. Compose the representation with Symn : SL2(C)→ SLn+1(C)



Torsion: recall Lens spaces
L(p, q) = S3/〈t〉. (z1, z2)

t7→ (e
2πi
p z1, e

2πi
p
qz2).

z2

z1

e2

te2

e1 te1

The lens ẽ3 = {0 ≤ θ1 ≤ 2π
p } is a fundamental domain for t

∂ẽ3 = (t − 1)ẽ2

∂ẽ2 = (1 + t + · · ·+ tp−1)ẽ1

∂ẽ1 = (tr − 1)ẽ0 r q ≡ 1 mod p

t 7→ ξ ∈ C,
ξp = 1
ξ 6= 1


∂ẽ3 = (ξ − 1)ẽ2

∂ẽ2 = 0
∂ẽ1 = (ξr − 1)ẽ0

H∗(L(p, q), ξ) = 0

Def: (Reidemeister)−1 τ(L(p, q), ξ) := |(ξ − 1)(ξr − 1)|−1

{τ(L(p, q), ξ)}ξp=1
ξ 6=1

= {τ(L(p, q′), ξ)}ξp=1
ξ 6=1

⇔ q′ = ±q±1 mod p



Torsion of a CW-complex

• K compact CW-complex, ρ : π1K → SLn(C).

Def: C∗(K , ρ) := Cn
ρ ⊗π1K CCW

∗ (K̃ ,Z)

{e ij }j i-cells of K

{vk}k basis for Cn

}
⇒ ci = {vk ⊗ ẽ ij }j ,k C-basis for Ci (K , ρ)

• ∂i : Ci+1(K , ρ)→ Ci (K , ρ)).

• If H∗(K , ρ) = 0, divide each basis into two ci = c ′i t c ′′i ,
so that card(c ′i+1) = card(c ′′i ) and minor(∂i , c

′
i+1, c

′′
i ) 6= 0

Notice that cn = c ′n and c0 = c ′′0 .

Def: τ(K , ρ) :=
n−1∏
i=0

minor(∂i , c
′
i+1, c

′′
i )(−1)i+1 ∈ C∗/{±1}

• τ(K , ρ) is a combinatorial invariant (by cellular homeos and
subdivision) and invariant of the conjugacy class of ρ

• I use the opposite convention from yesterday 1/τ(K , ρ)!!



Variety of representations

• Algebraic structure:
π1K = 〈γ1, . . . , γn | (ri )i∈I 〉 finitely generated.

hom(π1K ,SL2(C)) ↪→ SL2(C)×
(n)
· · · × SL2(C) ⊂ C4n

ρ 7→ (ρ(γ1), . . . , ρ(γn))
The (ri )i∈I yield polynomial equations.

{e ij }j i-cells of K

{v1, v2} basis for C2

}
⇒ ci = {vk ⊗ ẽ ij }j ,k C-basis for Ci (K , ρ)

• The coefficients of ∂ in the basis ci are polynomial on ρ, thus

τ(K , ρ) =
n−1∏
i=0

minor(∂i , c
′
i+1, c

′′
i )(−1)i+1 ∈ C∗/{±1}

is a rational function hom(π1K ,SL2(C)) 99K C∗.
• If χ(K ) is even, then there is no sign indeterminacy,

(as dimC2 is also even, the orderings of {v1, v2} and of the
cells e ij do not affect the determinant)



Variety of characters

Assume M oriented hyperbolic 3-manifold, vol(M) <∞, with 1 cusp.

Def: X (M) = hom(π1M, SL2(C))// SL2(C)

Any polynomial/rational function hom(π1M, SL2(C)) 99K C
invariant by conjugation induces a function X (M) 99K C.

• Distinguished component X0(M):
component of X (M) that contains the lift of the holonomy
π1M → Isom+(H3) ∼= PSL2(C) = SL2(C)/{± Id}

• Such a lift exits (Culler, Thurston)
{lifts of hol to SL2(C)} ↔ {spin structures on M}

because PSL2(C) ∼= Frame(H3) and SL2(C) ∼= Spin(H3)

• Since M has one cusp, X0(M) is a C-curve.
(it contains lift of holonomy of Dehn fillings)

Question Before defining
X0(M) 99K C

[ρ] 7→ τ(M, ρ)
, does H∗(M, ρ) = 0?



Acyclicity

Assume M oriented hyperbolic 3-manifold, vol(M) <∞, with 1 cusp.

Lemma ρ0 :π1M → SL2(C) lift of hol. ⇒ H∗(M, ρ0) = H∗(M, ρ0) = 0

Proof (Sketch) M ∼= M ∪ ∂M, ∂M ∼= T 2

• L2 forms in Ω∗(M,Eρ) are exact (Ragunathan, Garland,
Matsushima-Murakami, ... 1960’s):

H1(M, ∂M, ρ)
0→ H1(M, ρ)→ H1(∂M, ρ)

• Up to conj. ρ0(π1∂M) ⊂ ± ( 1 ∗
0 1 ) but ρ0(π1∂M) 6⊂ ( 1 ∗

0 1 )

⇒ H0(∂M, ρ0) ∼= (C2)ρ0(π1∂M) = 0
⇒ H∗(∂M, ρ0) = 0 (by Poincaré duality+χ(T 2) = 0)
⇒ H1(M, ρ0) = 0. (by the exact seq.)

• In addition H0(M, ρ0) ∼= (C2)ρ0(π1M) = 0.
+ Euler characteristic & duality homology/cohomology.

Cor: Acyclicity holds in X0(M) except for a finite set,
by semicontinuity of (co-)homology.



The torsion function

Assume M or. hyp 3-manifold, vol(M) <∞, with 1 cusp.

Def: TM(ρ) =

{
τ(M, ρ) if H∗(M, ρ) = 0

0 if H∗(M, ρ) 6= 0 and [ρ] nontrivial

• The sign is well defined (since dimC2 and χ(M) are even,
ordering of cells and of basis for C2 do not change the sign)

Remark: ∀[ρ] ∈ X0(M) nontrivial, H0(M, ρ) ∼= (C2)ρ(π1M) = 0

• TM : hom(π1M,SL2(C))− {ρ | tr ρ ≡ 2} → C is algebraic
Since M collapses to a 2-dim CW-complex.
and H0(M, ρ) ∼= H0(M, ρ) = 0 for ρ nontrivial,
denominators in the def of torsion do not vanish.

Hence it defines an algebraic function TM : X0(M)− {trivial} → C
Remark: When β1(M) = 1, characters in X0(M) are nontrivial.

hence TM : X0(M)→ C polynomial



Example

• M = S3−fig-8 knot.
π1(M) = 〈a, b,m | mam−1 = ab,mbm−1 = bab〉

• X0(M) = {(x , y) ∈ C2 | x2 − x − 1 = (x − 1)y2}
x = tra, y = trm = trma = trmb, trb = x/(x − 1) = y2 − 1− x

• Kitano (1994): TM = 2− 2y = 2− 2 trm

• Can define a twisted Alexander polynomial ∆M([ρ], t), with
∆M([ρ], 1) = TM([ρ]):

∆M(·, t) = t2 − 2t y + 1

Conj. (Dunfield, Friedl, and Jackson 2011)
For M = S3−hyp knot,

deg ∆M([ρ0], t) = 2 genus(K ) and
∆M([ρ0], t) is monic iff M is fibered.



Branched coverings on the Fig-8 knot
• Mn → S3 n-fold cyclic branched covering, branched over the

fig-eight knot K , Σn = K̃ ⊂ Mn lift of branching locus.

• τ(Mn, ρn) = τ(Mn − Σn, ρn)τ(Σn, ρn)
= τ(Mn − Σn, ρn) 1

2(1−cosh(λ(Σn))

(ρn : π1Mn → SL2(C) lift of holonomy, λ= complex length )

• Recall that ∆M(y , t) = t2 − 2yt + 1. Fox formula:

τ(Mn − Σn, ρn) =
n−1∏
k=0

∆(±2 cos(π/n), e2πi k
n )

• Hence, since λ(Σn) =
√

3π/n + O(1/n3):

lim
n→∞

log |τ(Mn, ρn)|
n

= lim
n→∞

1

n

n−1∑
k=0

log |∆(±2, e2πi k
n )|

=
1

2π

∫
|z|=1

log |∆(±2, z)|= 1

2π

∫
|z|=1

log |z2∓4z+1|= log(2 +
√

3)



Dehn fillings

Assume M oriented hyperbolic 3-manifold, vol(M) <∞, with 1 cusp.

• Choose a frame for H1(M,Z) ∼= Z2.
Mp/q Dehn filling (with filling meridian ±(p, q) ∈ Z2).
It is hyperbolic for p2 + q2 large, and
a lift of its holonomy [ρp/q|π1M ]→ [ρ0], holonomy of M.

• τ(Mp/q, ρp/q) is a topological invariant of the spin mfld Mp/q

Thm: τ(Mp/q) = TM(ρp/q|M) 1
2(1−cosh(λ(γp/q)))

where λ(γp/q) ∈ C complex length of γp/q soul of filling torus

Proof: Mayer-Vietoris to the pair (M,D2 × S1) & τ(T 2) = 1

Cor: |τ(Mp/q, ρp/q)| is dense in [ 1
4 |TM(ρ0)|,+∞)

(Because Re(λ(γp/q))→ 0 as p2 + q2 →∞
but Im(λ(γp/q)) is dense in R/2πZ)

• τ(Mp/q, ρp/q) distinguishes spin structures
(for M = S3−fig 8, TM(y) = 2− 2y and TM(2) 6= TM(−2)) .



Representations of SL2(C)
• Symn : SL2(C)→ SLn+1(C) irreducible
Cn+1 = Symn(C2)={homog. polynomials on C2 of deg n}
If C2 = 〈v1, v2〉, then Symn(C2) = 〈vn1 , v

n−1
1 v2, · · · , vn2 〉.

Aim Want to define Tn+1
M ([ρ]) = τ(M, Symn ◦ρ)

• For ρ0 lift of holonomy, H∗(M,Symn ◦ρ0) = 0 iff n + 1 even.
Can define Tn+1

M .

• For n + 1 odd, H i (M, Symn ◦ρ0)) = C for i = 1, 2,
and there are natural choices of basis for H i (M,Symn ◦ρ0),
depending on peripheral elements 1 6= γ ∈ π1T

2.{
Tn+1
M : X0(M) 99K C for n + 1 even

Tn+1
M,γ : X0(M) 99K C for n + 1 odd, 1 6= γ ∈ π1T

2

• Can study its domain, Dehn fillings, twisted polynomials, etc...



Representations of SL2(C) (continued)

• Tn+1
M ([ρ]) = τ(M,Symn ◦ρ), with Symn : SL2(C)→ SLn+1(C){
Tn+1
M : X0(M) 99K C for n + 1 even

Tn+1
M,γ : X0(M) 99K C for n + 1 odd, 1 6= γ ∈ π1T

2

• Mp/q Dehn filing

|τ(Mp/q,Symn ◦ρp/q)|

{
dense in

[
1

2n+1 |Tn+1
M (ρ0)|,∞

)
for n + 1 even

goes to ∞ as p2 + q2 →∞ for n + 1 odd

• (Menal-Ferrer-P, based on Müller’s work)

lim
k→∞

log |T2k+2
M ([ρ0])|

(2k+2)2 = lim
k→∞

log |T2k+1
M,γ ([ρ0])|

(2k+1)2 = 1
4π vol(M)

• For n + 1 = 3, Sym2 = Ad (1/(yesterday’s torsion))

Conj K ⊂ S3 hyperbolic knot. 〈K 〉N = Kashaev invariant, N ∈ N

〈K 〉N = eCS+i V 1√
2π i τ

N3/2(1 + O(
1

N
))

where CS + i V = (Chern-Simons + i Volume)(S3 − K )
τ = τ(S3 − K ,Ad ◦ hol,meridian)



Examples of torsion for higher representations
• M = S3−fig-8, y = trm.
• n + 1 even:

T2
M = 2 (1− y)

T4
M = −

(
y2 − 2 y − 2

)2

T6
M = 2(y − 1)

(
y8 + 2y7 − 13y6 − 20y5 + 49y4 + 48y3 − 33y2 − 18y − 18

)
T8
M = − (y − 1)2 (2 y7 − 4 y6 − 21 y5 + 19 y4 + 57 y3 + 13 y2 − 18 y − 6

)2

T10
M = 2 (y − 1)

(
y12 + 2 y11 − 13 y10 − 13 y9 + 27 y8 − y7 + 95 y6 + 90 y5

−148 y4 − 74 y3 + 61 y2 + 12 y − 6
)2
.

• n + 1 odd:
l =longitude, m =meridian

T3
M,l = ±(5− 2y2),

T3
M,m = ± 1

2

√
(y2 − 1)(y2 − 5) = ±(2 x + 1− y2)/2

T5
M,l = ±4(1− 6y2 + y4),

Thanks for your attention


