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Setting the framework

We start by a standard embedding of a genus g ≥ 3 surface Σg ,1

with a disk embedded into the sphere S3.

This decomposes S3 into two handlebodies.
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Mapping class group

The diagram
Σg ,1

� � //
� _

��

Hg� _

��
−Hg

� � ιg // S3 = Hg
⋃
ιg
−Hg

is a Heegaard splitting of the 3-sphere and gives rise to a diagram
of groups:
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Mapping class group

Mg ,1 Ag ,1
? _oo

Bg ,1
?�

OO

ABg ,1 = Ag ,1 ∩ Bg ,1? _oo ?�

OO

where

I Mg ,1 = π0(Diff(Σg ; rel.D2)) is the ”mapping class group”.

I Ag ,1 = subgroup of elements that extend over Hg .

I Bg ,1 = subgroup of elements that extend over −Hg .

I ABg ,1 is the intersection: mapping classes that extend to the
whole sphere.
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Heegaard splittings of closed manifolds

With this we can parametrize all manifolds.

Definition

Let V(3) be the set of oriented diffeomorphism classes of closed
oriented 3-manifolds.

Theorem (Singer, 1953)

The map

lim
g→∞Bg,1

\Mg ,1/Ag,1 −→ V(3)

φ 7−→ S3
φ = Hg

⋃
ιgφ
−Hg

is a bijection.
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The limit is taken along the inclusion maps Mg ,1 ↪→Mg+1,1

induced by extending a mapping class by the identity:

This is why we need to have this fixed disc.
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The Johnson filtration

The mapping class group has a very rich combinatorics:

Theorem (Nielsen)

Let π = π1(Σg ,1). The canonical action of diffeomorphisms on the
surface induces an injection:

Mg ,1 ↪→ Aut(π).

Consider the lower central series of π:

π ⊃ [π, π] ⊃ [π, [π, π]] ⊃ · · · ⊃ Γk ⊃ . . .

Γ0 = π Γk+1 = [π, Γk ]
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The Johnson filtration

The action of Mg ,1 on π respects this filtration

π ⊃ [π, π] ⊃ [π, [π, π]] ⊃ · · · ⊃ Γk ⊃ . . .

hence induces maps ∀k ≥ 0

Mg ,1
τk // Aut(π/Γk+1)

For instance τ0 = H1(−)
Let

Mg ,1(k + 1) = ker τk
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The Johnson filtration

This gives a descending and separated filtration of the mapping
class group:

Mg ,1 ⊃Mg ,1(1) ⊃Mg ,1(2) . . .
∞⋂
k=1

Mg (k) = {Id}

This is the Johnsons filtration, and the quotients Mg ,1/Mg ,1(k)
have been the object of much study (S. Morita, R. Hain, many
others).
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Two questions with partial answers
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Recall Singer’s and Nielsen’s theorem:

Theorem (Singer, 1953)

The map

lim
g→∞Bg,1

\Mg ,1/Ag,1 −→ V(3)

φ 7−→ S3
φ = Hg

⋃
ιgφ
−Hg

is a bijection.

Theorem (Nielsen)

Let π = π1(Σg ,1). The canonical action of diffeomorphisms on the
surface induces an injection:

Mg ,1 ↪→ Aut(π).

If you know the action of a mapping class on the fundamental
group, then you ”know” the manifold it builds.
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First question

We have an increasingly accurate series of approximations of the
action on the fundamental groups

Mg ,1
//

τk

&&

Autπ

��
Aut(π/Γk+1)

Question

What can you say about the manifold S3
φ if you know the action of

φ on π up to k + 1-commutators? i.e. you only know τk(φ)?
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Pointing towards an answer?

Some easy cases:

1. By Mayer-Viettoris, if you know τ0(φ) = H1(φ;Z) you know
the cohomology of S3

φ as a group.

2. To know the ring structure you only need τ1(φ) i.e the action
on π/[π, [π, π]] (Stallings).
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Cochran,Gerges, Orr (2001)

Definition

Two closed 3-manifolds M0 and M1 are k-surgery equivalent if
there exists a sequence M0 = X0 . . .X2 . . .Xm = X1 such that

I Xj+1 is obtained from Xj by ± 1
qj

surgery along a curve

γj ∈ Γk(π1(Xi ))

Theorem (Cochran,Gerges,Orr (2001))

The following are equivalent:

1. M0 and M1 are k-equivalent

2. ∃φ : π1(M0)/Γk(M0)
∼−→ π1(M1)/Γk(M1) such that

φ([M0]) = [M1] where [Mi ] is the image in
H3(π1(Mi )/Γk(Mi );Z) of the fundamental class of M along
the canonical map fi : Mi → K (π1(Mi )/Γk(Mi ), 1).
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1. Question: how is k-equvalence related to equality under τk .

S3
φ ∼k S3

ψ
?⇐⇒ τk(φ) = τk(ψ)

2. For k = 2 this is true (Cochran,Gerges,Orr)

Wolfgang Pitsch Trivial Cocycles, Casson invariant and a Conjecture of Perron



Second Question

Question

Assume know that φ ∈Mg ,1(k), i.e. the action on π up to
k-commutators is trivial. What is S3

φ?

By Mayer-Viettoris, S3
φ is an integral homology sphere.

Let S(3) = {M | H∗(M;Z) = H∗(S3;Z)}.

and S(3)k = {S3
φ | φ ∈ lim

g
Mg ,1(k)}
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Known cases

1. For k = 1 S(3)1 = S(3) (exercise in Mayer-Viettoris)

2. For k = 2 S(3)2 = S(3) (Prof. Morita)

3. For k = 3 S(3)3 = S(3) (W. P. and Massuyeau-Meilhan)

4. For k ≥ 4, unknown. Maybe yes?
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Trivial cocycles and Casson invariant
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One of the difficulites in the above question is to understand the
restriction of the doble coset relation Bg,1\Mg ,1/Ag,1 to the groups
Mg ,1(k) . Denote by ≈ this equivalence relation.

Proposition

∀φ, ψ ∈Mg ,1(1)

φ ≈ ψ ⇔
{
∃µ ∈ ABg ,1such that
φ = µψµ−1 ∈ Bg,1(1)\Mg ,1(1)/Ag,1(1)

where Ag ,1(k) = Ag ,1 ∩Mg ,1(k) and similarly for Bg ,1(k).

≈ is double class in Mg ,1(1)+ coinvariants under the action of
ABg ,1.
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From invariants to trivial cocycles

Let F : S(3)→ A be an invariant, where A is a group without
2-torsion. This is the same as a familly of functions

limg→∞Mg ,1(1)/ ≈
F

''Mg ,1(1)

66

Fg

// A

∀φ, ψ ∈Mg ,1(1) let Cg (φ, ψ) = Fg (φψ)− Fg (φ)− Fg (ψ)
This is a trivialized 2-cocycle on Mg ,1
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Properties of Cg

Cg (φ, ψ) = Fg (φψ)− Fg (φ)− Fg (ψ)

Because Fg is constant on the equivalence classes, Cg has nice
properties.

1. Cg+1 restricted to Mg ,1(1) is Cg .

2. Cg is invariant under conjugation by ABg ,1
Cg (µφµ−1, µψµ−1) = Cg (φ, ψ)

3. Cg = 0 on Mg ,1(1)×Ag ,1(1) ∪ Bg ,1(1)×Mg ,1(1)

4. Cg 6= 0, unless F = 0, equivalently Cg is associated to a
unique F .

Observe that Cg measures the defect to be a homomorphism. It
can alos be seen as a kind of ”surgery instruction”.
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From cocycles to invariants

Theorem (W.P.)

Let A be an abelian group wihtout 2-torsion. Let (Cg )g≥3 be a
familiy of 2-cocycles on Mg ,1(1) such that

1. Cg+1 restricted to Mg ,1(1) is Cg .

2. Cg is invariant under conjugation by ABg ,1
Cg (µφµ−1, µψµ−1) = Cg (φ, ψ).

3. Cg = 0 on Mg ,1(1)×Ag ,1(1) ∪ Bg ,1(1)×Mg ,1(1).

4. [Cg ] = 0 in H2(Mg ,1(1); A).

5. The associated torsor ρCg ∈ H1(ABg ,1; Hom(Mg ,1(1),A)) is
0.

Then Cg is the defect of a unique invariant F with values in A,
where Fg is the unique ABg ,1-invariant trivialization of Cg .
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Algebraic construction of the cvAsson invariant

I The Casson invariant λ : S(3)→ Z of M ∈ S(3) essentially
counts the number of representations of π1(M) in SU(2).

I The Casson invariant is determined by surgery properties.
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Let H = H1(Σg ;Z) and ω : H × H → Z the (symplectic)
intersection form.

I The embedding Σg ↪→ S3 determines two transverse
lagrangians A⊕ B = H,

I The abelianization of Mg ,1(1) ' Λ3H ⊕ 2-torsion. Let
τ1 :Mg ,1(1)→ Λ3H.

I View the intersection form as a map ω : A× B → Z. It
induces Λ3ω : Λ3A× Λ3B → Z.

I On Λ3H = Λ3A⊕WAB ⊕ Λ3B consider the bilinear form (i.e.
2-cocycle!)

2Jg =

 0 0 0
0 0 0

Λ3ω 0 0


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Then one can apply the previous theorem to the pull back τ∗1 (2Jg )
and from the surgery formula recognize the associated invariant as
being the Casson invariant.
Otherwise said the relation:

∀φ, ψ ∈Mg ,1(1) λ(S3
φψ)− λ(S3

φ)− λ(S3
ψ) = 2Jg (τ1(φ), τ1(ψ))

defines the Casson invariant.

Question

Find the cocycles associated to other invariants, for instance those
defined through Ohtsuki’s theory of finite type invariants.
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Perron’s conjecture
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joint with R. Riba

Let p 6= 2 be a prime number. Let

Mg ,1[p] = ker
(
Mg ,1

H1−→ Sp(2g ,Z)� Sp(2g ,Z/pZ)
)

If φ ∈Mg ,1[p] then the associated S3
φ is a mod-p homology sphere.

S(3, p) = {M ∈ V(3) | H∗(M;Z/pZ) = H∗(S3;Z/pZ)}

Proposition

There is a bijection

lim
g→∞

Mg ,1[p]/ ≈−→ V(3)

where ≈ is as before double coset + conjugation by ABg ,1
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Perro’s results and statement

I Every element φ ∈Mg ,1[p] can be written as a product

φ = fφT±pγ1
T±pγ2

· · ·T±pγn

where the γi are simple closed curves on Σg and fφ ∈Mg ,1[p].

Conjecture

Conjecture: If λ denotes the Casson invariant, then λ(S3
fφ

) mod p

is an invariant of S3
φ.
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The whole setting for understanding invariants of integral
homology spheres works for mod-p homology spheres.

Theorem (W.P.)

Let (Cg )g≥3 be a familiy of 2-cocycles with values in Z/pZ on
Mg ,1[p] such that

1. Cg+1 restricted to Mg ,1[p] is Cg .

2. Cg is invariant under conjugation by ABg ,1
Cg (µφµ−1, µψµ−1) = Cg (φ, ψ).

3. Cg = 0 on Mg ,1[p]×Ag ,1[p] ∪ Bg ,1[p]×Mg ,1[p].

4. [Cg ] = 0 in H2(Mg ,1[p];Z/pZ).

5. The associated torsor ρCg ∈ H1(ABg ,1; Hom(Mg ,1[p],Z/pZ))
is 0.

Then Cg is the defect of p different invariants F with values in
Z/pZ, the associated p functions Fg are the unique
ABg ,1-invariant trivializations of Cg .
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Consider the cocycle on Λ3H defining the Casson invariant and
reduce it mod p.

2Jg =

 0 0 0
0 0 0

Λ3ω 0 0


Then there is a commutative diagram:

Mg ,1(1) �
� //

τ1

��

Mg ,1[p]

∃!τ̃1ww
Λ3H mod− p

Then apply the theorem to τ̃∗1 (2Jg ). Under scrutiny: triviality of
the cocycle.
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Thank you for your attention.
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