Trivial Cocycles, Casson invariant and a Conjecture of Perron

Wolfgang Pitsch

Departamento de matemáticas Universidad Autónoma de Barcelona

Topology and Geometry of Low-dimensional Manifolds Nara Womens University, October 25-28, 2016. We start by a standard embedding of a genus $g \ge 3$ surface $\Sigma_{g,1}$ with a disk embedded into the sphere \mathbb{S}^3 .

This decomposes \mathbb{S}^3 into two handlebodies.

is a Heegaard splitting of the 3-sphere and gives rise to a diagram of groups:

Mapping class group

where

- $\mathcal{M}_{g,1} = \pi_0(\operatorname{Diff}(\Sigma_g; \operatorname{rel}.D^2))$ is the "mapping class group".
- $\mathcal{A}_{g,1} =$ subgroup of elements that extend over \mathcal{H}_g .
- $\mathcal{B}_{g,1}$ = subgroup of elements that extend over $-\mathcal{H}_g$.
- ► AB_{g,1} is the intersection: mapping classes that extend to the whole sphere.

With this we can parametrize all manifolds.

Definition

Let $\mathcal{V}(3)$ be the set of oriented diffeomorphism classes of closed oriented 3-manifolds.

Theorem (Singer, 1953)

The map

$$\begin{array}{cccc} \lim_{g \to \infty} {}_{\mathcal{B}_{g,1}} \backslash \mathcal{M}_{g,1} / {}_{\mathcal{A}_{g,1}} & \longrightarrow & \mathcal{V}(3) \\ \phi & \longmapsto & \mathbb{S}_{\phi}^3 = \mathcal{H}_g \bigcup_{{}_{t_g}\phi} - \mathcal{H}_g \end{array}$$

is a bijection.

The limit is taken along the inclusion maps $\mathcal{M}_{g,1} \hookrightarrow \mathcal{M}_{g+1,1}$ induced by extending a mapping class by the identity:

This is why we need to have this fixed disc.

The mapping class group has a very rich combinatorics:

Theorem (Nielsen)

Let $\pi = \pi_1(\Sigma_{g,1})$. The canonical action of diffeomorphisms on the surface induces an injection:

$$\mathcal{M}_{g,1} \hookrightarrow \operatorname{Aut}(\pi).$$

Consider the lower central series of π :

$$\pi \supset [\pi, \pi] \supset [\pi, [\pi, \pi]] \supset \dots \supset \Gamma_k \supset \dots$$
$$\Gamma_0 = \pi \quad \Gamma_{k+1} = [\pi, \Gamma_k]$$

The action of $\mathcal{M}_{g,1}$ on π respects this filtration

$$\pi \supset [\pi, \pi] \supset [\pi, [\pi, \pi]] \supset \cdots \supset \Gamma_k \supset \ldots$$

hence induces maps $\forall k \ge 0$

$$\mathcal{M}_{g,1} \xrightarrow{\tau_k} \mathcal{A}ut(\pi/\Gamma_{k+1})$$

For instance $au_0 = H_1(-)$ Let

$$\mathcal{M}_{g,1}(k+1) = \ker \tau_k$$

This gives a descending and separated filtration of the mapping class group:

$$\mathcal{M}_{g,1} \supset \mathcal{M}_{g,1}(1) \supset \mathcal{M}_{g,1}(2) \dots \quad \bigcap_{k=1}^{\infty} \mathcal{M}_{g}(k) = \{ Id \}$$

This is the Johnsons filtration, and the quotients $\mathcal{M}_{g,1}/\mathcal{M}_{g,1}(k)$ have been the object of much study (S. Morita, R. Hain, many others).

Two questions with partial answers

Recall Singer's and Nielsen's theorem:

Theorem (Singer, 1953)

The map

$$\begin{array}{cccc} \lim_{g \to \infty} {}_{\mathcal{B}_{g,1}} \backslash \mathcal{M}_{g,1} / {}_{\mathcal{A}_{g,1}} & \longrightarrow & \mathcal{V}(3) \\ \phi & \longmapsto & \mathbb{S}_{\phi}^3 = \mathcal{H}_g \bigcup_{{}_{\iota_g} \phi} - \mathcal{H}_g \end{array}$$

is a bijection.

Theorem (Nielsen)

Let $\pi = \pi_1(\Sigma_{g,1})$. The canonical action of diffeomorphisms on the surface induces an injection:

$$\mathcal{M}_{g,1} \hookrightarrow \mathsf{Aut}(\pi).$$

If you know the action of a mapping class on the fundamental group, then you "know" the manifold it builds.

We have an increasingly accurate series of approximations of the action on the fundamental groups

Question

What can you say about the manifold \mathbb{S}^3_{ϕ} if you know the action of ϕ on π up to k + 1-commutators? i.e. you only know $\tau_k(\phi)$?

Some easy cases:

- 1. By Mayer-Viettoris, if you know $\tau_0(\phi) = H_1(\phi; \mathbb{Z})$ you know the cohomology of \mathbb{S}^3_{ϕ} as a group.
- 2. To know the ring structure you only need $\tau_1(\phi)$ i.e the action on $\pi/[\pi, [\pi, \pi]]$ (Stallings).

Cochran, Gerges, Orr (2001)

Definition

Two closed 3-manifolds M_0 and M_1 are k-surgery equivalent if there exists a sequence $M_0 = X_0 \dots X_2 \dots X_m = X_1$ such that

• X_{j+1} is obtained from X_j by $\pm \frac{1}{q_j}$ surgery along a curve $\gamma_j \in \Gamma_k(\pi_1(X_i))$

Theorem (Cochran, Gerges, Orr (2001))

The following are equivalent:

- 1. M_0 and M_1 are k-equivalent
- 2. $\exists \phi : \pi_1(M_0) / \Gamma_k(M_0) \xrightarrow{\sim} \pi_1(M_1) / \Gamma_k(M_1)$ such that $\phi([M_0]) = [M_1]$ where $[M_i]$ is the image in $H_3(\pi_1(M_i) / \Gamma_k(M_i); \mathbb{Z})$ of the fundamental class of M along the canonical map $f_i : M_i \to K(\pi_1(M_i) / \Gamma_k(M_i), 1)$.

1. Question: how is k-equvalence related to equality under τ_k .

$$\mathbb{S}^3_\phi\sim_k \mathbb{S}^3_\psi \stackrel{?}{\Longleftrightarrow} au_k(\phi) = au_k(\psi)$$

2. For k = 2 this is true (Cochran,Gerges,Orr)

Question

Assume know that $\phi \in \mathcal{M}_{g,1}(k)$, i.e. the action on π up to k-commutators is trivial. What is \mathbb{S}^3_{ϕ} ?

By Mayer-Viettoris, \mathbb{S}^3_{ϕ} is an integral homology sphere.

Let
$$\mathcal{S}(3) = \{ M \mid H_*(M; \mathbb{Z}) = H_*(\mathbb{S}^3; \mathbb{Z}) \}.$$

and $\mathcal{S}(3)_k = \{ \mathbb{S}^3_{\phi} \mid \phi \in \lim_{g} \mathcal{M}_{g,1}(k) \}$

2

- 1. For $k = 1 S(3)_1 = S(3)$ (exercise in Mayer-Viettoris)
- 2. For $k = 2 \mathcal{S}(3)_2 = \mathcal{S}(3)$ (Prof. Morita)
- 3. For $k = 3 S(3)_3 = S(3)$ (W. P. and Massuyeau-Meilhan)
- 4. For $k \ge 4$, unknown. Maybe yes?

Trivial cocycles and Casson invariant

One of the difficulites in the above question is to understand the restriction of the doble coset relation $\mathcal{B}_{g,1} \setminus \mathcal{M}_{g,1}/\mathcal{A}_{g,1}$ to the groups $\mathcal{M}_{g,1}(k)$. Denote by \approx this equivalence relation.

Proposition

 $\forall \phi, \psi \in \mathcal{M}_{g,1}(1)$

$$\phi \approx \psi \Leftrightarrow \begin{cases} \exists \mu \in \mathcal{AB}_{g,1} such that \\ \phi = \mu \psi \mu^{-1} \in \mathcal{B}_{g,1}(1) \setminus \mathcal{M}_{g,1}(1) / \mathcal{A}_{g,1}(1) \end{cases}$$

where $\mathcal{A}_{g,1}(k) = \mathcal{A}_{g,1} \cap \mathcal{M}_{g,1}(k)$ and similarly for $\mathcal{B}_{g,1}(k)$.

 \approx is double class in $\mathcal{M}_{g,1}(1)+$ coinvariants under the action of $\mathcal{AB}_{g,1}.$

Let $F : S(3) \rightarrow A$ be an invariant, where A is a group without 2-torsion. This is the same as a familly of functions

 $\forall \phi, \psi \in \mathcal{M}_{g,1}(1) \text{ let } C_g(\phi, \psi) = F_g(\phi\psi) - F_g(\phi) - F_g(\psi)$ This is a trivialized 2-cocycle on $\mathcal{M}_{g,1}$

$$C_{g}(\phi,\psi) = F_{g}(\phi\psi) - F_{g}(\phi) - F_{g}(\psi)$$

Because F_g is constant on the equivalence classes, C_g has nice properties.

1.
$$C_{g+1}$$
 restricted to $\mathcal{M}_{g,1}(1)$ is C_g .

- 2. C_g is invariant under conjugation by $\mathcal{AB}_{g,1}$ $C_g(\mu\phi\mu^{-1},\mu\psi\mu^{-1}) = C_g(\phi,\psi)$
- 3. $C_g = 0$ on $\mathcal{M}_{g,1}(1) imes \mathcal{A}_{g,1}(1) \cup \mathcal{B}_{g,1}(1) imes \mathcal{M}_{g,1}(1)$
- 4. $C_g \neq 0$, unless F = 0, equivalently C_g is associated to a unique F.

Observe that C_g measures the defect to be a homomorphism. It can alos be seen as a kind of "surgery instruction".

Theorem (W.P.)

Let A be an abelian group wihtout 2-torsion. Let $(C_g)_{g\geq 3}$ be a familiy of 2-cocycles on $\mathcal{M}_{g,1}(1)$ such that

- 1. C_{g+1} restricted to $\mathcal{M}_{g,1}(1)$ is C_g .
- 2. C_g is invariant under conjugation by $\mathcal{AB}_{g,1}$ $C_g(\mu\phi\mu^{-1},\mu\psi\mu^{-1}) = C_g(\phi,\psi).$
- 3. $C_g = 0$ on $\mathcal{M}_{g,1}(1) \times \mathcal{A}_{g,1}(1) \cup \mathcal{B}_{g,1}(1) \times \mathcal{M}_{g,1}(1)$.
- 4. $[C_g] = 0$ in $H^2(\mathcal{M}_{g,1}(1); A)$.
- 5. The associated torsor $\rho_{C_g} \in H^1(\mathcal{AB}_{g,1}; Hom(\mathcal{M}_{g,1}(1), A))$ is 0.

Then C_g is the defect of a unique invariant F with values in A, where F_g is the unique $AB_{g,1}$ -invariant trivialization of C_g .

- The Casson invariant λ : S(3) → Z of M ∈ S(3) essentially counts the number of representations of π₁(M) in SU(2).
- The Casson invariant is determined by surgery properties.

Let $H = H_1(\Sigma_g; \mathbb{Z})$ and $\omega : H \times H \to \mathbb{Z}$ the (symplectic) intersection form.

- ► The embedding $\Sigma_g \hookrightarrow \mathbb{S}^3$ determines two transverse lagrangians $A \oplus B = H$,
- ► The abelianization of $\mathcal{M}_{g,1}(1) \simeq \Lambda^3 H \oplus 2$ -torsion. Let $\tau_1 : \mathcal{M}_{g,1}(1) \to \Lambda^3 H$.
- View the intersection form as a map ω : A × B → Z. It induces Λ³ω : Λ³A × Λ³B → Z.
- On $\Lambda^3 H = \Lambda^3 A \oplus W_{AB} \oplus \Lambda^3 B$ consider the bilinear form (i.e. 2-cocycle!)

$$2J_g = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \Lambda^3 \omega & 0 & 0 \end{pmatrix}$$

Then one can apply the previous theorem to the pull back $\tau_1^*(2J_g)$ and from the surgery formula recognize the associated invariant as being the Casson invariant. Otherwise said the relation:

$$\forall \phi, \psi \in \mathcal{M}_{g,1}(1) \quad \lambda(\mathbb{S}^3_{\phi\psi}) - \lambda(\mathbb{S}^3_{\phi}) - \lambda(\mathbb{S}^3_{\psi}) = 2J_g(\tau_1(\phi), \tau_1(\psi))$$

defines the Casson invariant.

Question

Find the cocycles associated to other invariants, for instance those defined through Ohtsuki's theory of finite type invariants.

Perron's conjecture

joint with R. Riba

Let $p \neq 2$ be a prime number. Let

$$\mathcal{M}_{g,1}[p] = \mathsf{ker}\left(\mathcal{M}_{g,1} \overset{H_1}{\longrightarrow} \mathit{Sp}(2g,\mathbb{Z}) \twoheadrightarrow \mathit{Sp}(2g,\mathbb{Z}/p\mathbb{Z})
ight)$$

If $\phi \in \mathcal{M}_{g,1}[p]$ then the associated \mathbb{S}^3_{ϕ} is a mod-p homology sphere.

$$\mathcal{S}(3,p) = \{ M \in \mathcal{V}(3) \mid H_*(M; \mathbb{Z}/p\mathbb{Z}) = H_*(\mathbb{S}^3; \mathbb{Z}/p\mathbb{Z}) \}$$

Proposition

There is a bijection

$$\lim_{g\to\infty}\mathcal{M}_{g,1}[p]/\approx\longrightarrow\mathcal{V}(3)$$

where pprox is as before double coset + conjugation by $\mathcal{AB}_{g,1}$

• Every element $\phi \in \mathcal{M}_{g,1}[p]$ can be written as a product

$$\phi = f_{\phi} T_{\gamma_1}^{\pm p} T_{\gamma_2}^{\pm p} \cdots T_{\gamma_n}^{\pm p}$$

where the γ_i are simple closed curves on Σ_g and $f_{\phi} \in \mathcal{M}_{g,1}[p]$.

Conjecture

Conjecture: If λ denotes the Casson invariant, then $\lambda(\mathbb{S}^3_{f_{\phi}}) \mod p$ is an invariant of \mathcal{S}^3_{ϕ} .

The whole setting for understanding invariants of integral homology spheres works for mod-*p* homology spheres.

Theorem (W.P.)

Let $(C_g)_{g\geq 3}$ be a familiy of 2-cocycles with values in $\mathbb{Z}/p\mathbb{Z}$ on $\mathcal{M}_{g,1}[p]$ such that

- 1. C_{g+1} restricted to $\mathcal{M}_{g,1}[p]$ is C_g .
- 2. C_g is invariant under conjugation by $\mathcal{AB}_{g,1}$ $C_g(\mu\phi\mu^{-1},\mu\psi\mu^{-1}) = C_g(\phi,\psi).$
- 3. $C_g = 0$ on $\mathcal{M}_{g,1}[p] \times \mathcal{A}_{g,1}[p] \cup \mathcal{B}_{g,1}[p] \times \mathcal{M}_{g,1}[p]$.
- 4. $[C_g] = 0$ in $H^2(\mathcal{M}_{g,1}[p]; \mathbb{Z}/p\mathbb{Z}).$
- 5. The associated torsor $\rho_{C_g} \in H^1(\mathcal{AB}_{g,1}; Hom(\mathcal{M}_{g,1}[p], \mathbb{Z}/p\mathbb{Z}))$ is 0.

Then C_g is the defect of p different invariants F with values in $\mathbb{Z}/p\mathbb{Z}$, the associated p functions F_g are the unique $\mathcal{AB}_{g,1}$ -invariant trivializations of C_g .

Consider the cocycle on $\Lambda^3 H$ defining the Casson invariant and reduce it mod p.

$$2J_g = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \Lambda^3 \omega & 0 & 0 \end{pmatrix}$$

Then there is a commutative diagram:

Then apply the theorem to $\tilde{\tau}_1^*(2J_g)$. Under scrutiny: triviality of the cocycle.

Thank you for your attention.