Characteristic classes of homological surface bundles and four-dimensional topology

Shigeyuki MORITA

based on jw/w Takuya SAKASAI and Masaaki SUZUKI

October 25, 2016

Contents

Contents

- An "enlargement" $\mathcal{H}_{q,1}$ of the mapping class group
- 2 Representations of $\mathcal{H}_{g,1}$
- **③** Kontsevich's theorem and homology of $\operatorname{Out} F_n$
- Characteristic classes of homological surface bundles
- Prospect

An "enlargement" $\mathcal{H}_{g,1}$ of the mapping class group (1)

Mapping class groups:

$$\mathcal{M}_g = \pi_0 \operatorname{Diff}^+\Sigma_g, \quad \mathcal{M}_{g,1} = \pi_0 \operatorname{Diff}(\Sigma_g, D^2)$$

Another description:

$$\mathcal{M}_{g,1} = \{ (\Sigma_{g,1} \times I, \varphi) \, ; \, \varphi : \Sigma_{g,1} \overset{\mathsf{rel}}{\cong} \Sigma_{g,1} \times \{1\} \}$$
 /isotopy

An "enlargement" $\mathcal{H}_{g,1}$ of the mapping class group (1)

Mapping class groups:

$$\mathcal{M}_g = \pi_0 \operatorname{Diff}^+\Sigma_g, \quad \mathcal{M}_{g,1} = \pi_0 \operatorname{Diff}(\Sigma_g, D^2)$$

Another description:

$$\mathcal{M}_{g,1} = \{ (\Sigma_{g,1} \times I, \varphi) \, ; \, \varphi : \Sigma_{g,1} \overset{\text{rel } \partial}{\cong} \Sigma_{g,1} \times \{1\} \}$$
/isotopy

Group of homology cobordism classes of homology cylinders:

Garoufalidis-Levine (based on Goussarov and Habiro):

$$\mathcal{H}_{g,1} = \{ (\textbf{homology} \ \Sigma_{g,1} \times I, \varphi) \ ; \ \varphi : \Sigma_{g,1} \overset{\text{rel} \ \partial}{\cong} \Sigma_{g,1} \times \{1\} \}$$

$$/\text{homology cobordism}$$

An "enlargement" $\mathcal{H}_{g,1}$ of the mapping class group (2)

two versions:

$$\mathcal{H}_{g,1}^{ extstyle e$$

enlargements of $\mathcal{M}_{g,1}$

An "enlargement" $\mathcal{H}_{g,1}$ of the mapping class group (2)

two versions:

$$\mathcal{H}_{g,1}^{ extstyle e$$

enlargements of $\mathcal{M}_{q,1}$

 $\Theta^3 := \{\text{homology } 3\text{-spheres}\}/\text{smooth homology cobordism}$ infinite rank by Furuta, Fintushel-Stern

Define a group $\overline{\mathcal{H}}_{g,1}$ by the following central extension

$$0 \to \mathbf{\Theta}^3 = \mathcal{H}_{0,1}^{\mathsf{smooth}} \to \mathcal{H}_{g,1}^{\mathsf{smooth}} \to \overline{\mathcal{H}}_{g,1} \to 1$$

An "enlargement" $\mathcal{H}_{g,1}$ of the mapping class group (3)

Problem

Study the Euler class

$$\chi(\mathcal{H}_{g,1}^{\color{red} \textbf{smooth}}) \in H^2(\overline{\mathcal{H}}_{g,1}; \boldsymbol{\Theta}^3)$$

An "enlargement" $\mathcal{H}_{q,1}$ of the mapping class group (3)

Problem

Study the Euler class

$$\chi(\mathcal{H}_{g,1}^{\color{red} \textbf{smooth}}) \in H^2(\overline{\mathcal{H}}_{g,1}; \boldsymbol{\Theta}^3)$$

One of the foundational results of Freedman:

Theorem (Freedman)

Any homology 3-sphere bounds a contractible topological 4-manifold so that $\Theta_{top}^3 = 0$

It follows that $\, \mathcal{H}^{\mathrm{smooth}}_{g,1} \, o \, \mathcal{H}^{\mathrm{top}}_{g,1} \,$ factors through $\overline{\mathcal{H}}_{g,1}$

An "enlargement" $\mathcal{H}_{q,1}$ of the mapping class group (4)

$$oldsymbol{\Theta}^3
ightarrow \mathcal{H}^{ extstyle smooth}_{g,1}
ightarrow \overline{\mathcal{H}}_{g,1} \xrightarrow{ extstyle Freedman} \mathcal{H}^{ extstyle top}_{g,1}$$

Problem (about "Picard groups")

Study the following homomorphisms ($g \ge 3$)

$$H^2(\mathcal{H}_{g,1}^{\text{top}}) \to H^2(\overline{\mathcal{H}}_{g,1}) \to H^2(\mathcal{H}_{g,1}^{\text{smooth}}) \to H^2(\mathcal{M}_{g,1}) \overset{\text{Harer}}{\cong} \mathbb{Z}$$

An "enlargement" $\mathcal{H}_{a,1}$ of the mapping class group (4)

$$oldsymbol{\Theta}^3
ightarrow \mathcal{H}_{g,1}^{ extstyle ext{mooth}}
ightarrow \overline{\mathcal{H}}_{g,1} \xrightarrow{ extstyle ext{Freedman}} \mathcal{H}_{g,1}^{ ext{top}}$$

Problem (about "Picard groups")

Study the following homomorphisms (q > 3)

$$H^2(\mathcal{H}_{g,1}^{ ext{top}}) o H^2(\overline{\mathcal{H}}_{g,1}) o H^2(\mathcal{H}_{g,1}^{ ext{smooth}}) o H^2(\mathcal{M}_{g,1}) \overset{ ext{Harer}}{\cong} \mathbb{Z}$$

$$\cong$$
 ?

Representations of $\mathcal{H}_{g,1}$ (1)

Theorem (Dehn-Nielsen-Zieschang)

- $\mathcal{M}_g \cong \operatorname{Out}^+ \pi_1 \Sigma_g$ (outer automorphism group)
- $\mathcal{M}_{q,1} \cong \{ \varphi \in \operatorname{Aut} \pi_1 \Sigma_{q,1}; \varphi(\zeta) = \zeta \}$ ζ : boundary curve

"differentiate" \Rightarrow

Representations of $\mathcal{H}_{g,1}$ (1)

Theorem (Dehn-Nielsen-Zieschang)

- $\mathcal{M}_g \cong \operatorname{Out}^+ \pi_1 \Sigma_g$ (outer automorphism group)
- $\mathcal{M}_{q,1} \cong \{ \varphi \in \operatorname{Aut} \pi_1 \Sigma_{q,1}; \varphi(\zeta) = \zeta \}$ $\zeta : boundary curve$

"differentiate" \Rightarrow

Definition ("Lie algebra" of $\mathcal{M}_{g,1}$)

 $\mathfrak{h}_{g,1} = \{ ext{symplectic} ext{ derivation of the free Lie algebra } \mathcal{L}(H_{\mathbb{Q}}) \}$

$$\mathfrak{h}_{g,1}=\bigoplus_{k=0}^{\infty}\mathfrak{h}_{g,1}(k)\text{: symplectic derivation Lie algebra of }\mathcal{L}(H_{\mathbb{Q}})$$

very important in low dimensional topology

Representations of $\mathcal{H}_{g,1}$ (2)

Mal'cev nilpotent completion of $\pi_1\Sigma_{g,1}$:

$$\cdots \to N_{d+1} \to N_d \to \cdots \to N_1 = H_{\mathbb{Q}} \to 0 \quad (H_{\mathbb{Q}} = H_1(\Sigma_{g,1}; \mathbb{Q}))$$

 \Rightarrow obtain a series of representations of $\mathcal{M}_{q,1}$:

$$\rho_{\infty} = \{\rho_d\}_d : \mathcal{M}_{g,1} \to \varprojlim_{d \to \infty} \operatorname{Aut}_0 N_d \quad (\rho_d : \mathcal{M}_{g,1} \to \operatorname{Aut}_0 N_d)$$

Representations of $\mathcal{H}_{g,1}$ (2)

Mal'cev nilpotent completion of $\pi_1\Sigma_{g,1}$:

$$\cdots \to N_{d+1} \to N_d \to \cdots \to N_1 = H_{\mathbb{Q}} \to 0 \quad (H_{\mathbb{Q}} = H_1(\Sigma_{g,1}; \mathbb{Q}))$$

 \Rightarrow obtain a series of representations of $\mathcal{M}_{g,1}$:

$$\rho_{\infty} = \{\rho_d\}_d : \mathcal{M}_{g,1} \to \varprojlim_{d \to \infty} \operatorname{Aut}_0 N_d \quad (\rho_d : \mathcal{M}_{g,1} \to \operatorname{Aut}_0 N_d)$$

associated embedding of Lie algebras:

$$\tau: \bigoplus_{d=1}^{\infty} \mathcal{M}_{g,1}(d)/\mathcal{M}_{g,1}(d+1) \quad \stackrel{\mathsf{small}}{\subset} \quad \mathfrak{h}_{g,1}^+ \quad \stackrel{\mathsf{ideal}}{\subset} \quad \mathfrak{h}_{g,1}$$

$$\mathcal{M}_{q,1}(d) := \operatorname{Ker} \rho_d$$
 Johnson filtration

Representations of $\mathcal{H}_{g,1}$ (3)

Stallings' theorem ⇒

Theorem (Garoufalidis-Levine, Habegger)

There exists a homomorphism

$$\tilde{\rho}_{\infty}: \mathcal{H}_{g,1}^{\text{top}} \to \varprojlim_{d \to \infty} \operatorname{Aut}_{0} N_{d}$$

which extends ρ_{∞} , each finite factor $\tilde{\rho}_d: \mathcal{H}_{g,1}^{\text{top}} \to \operatorname{Aut}_0 N_d$ is surjective over \mathbb{Z} for any $d \geq 1$

Representations of $\mathcal{H}_{g,1}$ (3)

Stallings' theorem \Rightarrow

Theorem (Garoufalidis-Levine, Habegger)

There exists a homomorphism

$$\tilde{\rho}_{\infty}: \mathcal{H}_{g,1}^{\text{top}} \to \varprojlim_{d \to \infty} \operatorname{Aut}_{0} N_{d}$$

which extends ρ_{∞} , each finite factor $\tilde{\rho}_d: \mathcal{H}_{g,1}^{\text{top}} \to \operatorname{Aut}_0 N_d$ is surjective over \mathbb{Z} for any $d \geq 1$

$$\mathcal{M}_{g,1}(d) \xrightarrow{\tau_d \atop \text{image small}} \mathfrak{h}_{g,1}(d)$$

$$\cap \downarrow \qquad \qquad \parallel$$

$$\mathcal{H}_{g,1}^{\text{top}}(d) \xrightarrow{\tilde{\tau}_d \atop \text{surjective}} \mathfrak{h}_{g,1}(d)$$

Representations of $\mathcal{H}_{g,1}$ (4)

 \Rightarrow obtain

Representations of $\mathcal{H}_{g,1}$ (4)

 \Rightarrow obtain

$$\tilde{\rho}_{\infty}^* : \lim_{d \to \infty} H^*(\operatorname{Aut}_0 N_d) \to H^*(\mathcal{H}_{g,1}^{\text{top}}; \mathbb{Q})$$

$$\tilde{\rho}_{\infty}^*: \lim_{g \to \infty} \lim_{d \to \infty} H^*(\operatorname{Aut}_0 N_d) \to H^*(\mathcal{H}_{g,1}^{\text{top}}; \mathbb{Q})$$

Representations of $\mathcal{H}_{g,1}$ (5)

 $\operatorname{Aut}_0 N_d$ is a linear algebraic group and we have

$$\operatorname{Aut}_0 N_d \cong \operatorname{IAut}_0 N_d \rtimes \operatorname{Sp}(2g, \mathbb{Q})$$

$$\operatorname{Lie}(\operatorname{IAut}_0 N_d) \cong \mathfrak{h}_{g,1}^+[d]$$
 (truncated)

Proposition

$$\lim_{g\to\infty}\lim_{d\to\infty}H^*(\operatorname{Aut}_0N_d)\cong H_c^*(\hat{\mathfrak{h}}_{\infty,1}^+)^{\operatorname{Sp}}\otimes H^*(\operatorname{Sp}(2\infty,\mathbb{Q});\mathbb{Q})$$

$$\widehat{\mathfrak{h}}_{\infty,1}^+: \text{completion of} \quad \mathfrak{h}_{\infty,1}^+ = \lim_{q \to \infty} \mathfrak{h}_{g,1}^+$$

Representations of $\mathcal{H}_{g,1}$ (5)

 $\operatorname{Aut}_0 N_d$ is a linear algebraic group and we have

$$\operatorname{Aut}_0 N_d \cong \operatorname{IAut}_0 N_d \rtimes \operatorname{Sp}(2g, \mathbb{Q})$$

$$\operatorname{Lie}(\operatorname{IAut}_0 N_d) \cong \mathfrak{h}_{g,1}^+[d]$$
 (truncated)

Proposition

$$\lim_{g\to\infty}\lim_{d\to\infty}H^*(\operatorname{Aut}_0N_d)\cong H_c^*(\hat{\mathfrak{h}}_{\infty,1}^+)^{\operatorname{Sp}}\otimes H^*(\operatorname{Sp}(2\infty,\mathbb{Q});\mathbb{Q})$$

$$\widehat{\mathfrak{h}}_{\infty,1}^+: \text{completion of} \quad \mathfrak{h}_{\infty,1}^+ = \lim_{g \to \infty} \mathfrak{h}_{g,1}^+$$

 \Rightarrow obtain

$$\tilde{\rho}_{\infty}^*: H_c^*(\hat{\mathfrak{h}}_{\infty,1}^+)^{\operatorname{Sp}} \otimes H^*(\operatorname{Sp}(2\infty,\mathbb{Q});\mathbb{Q}) \to H^*(\mathcal{H}_{a,1}^{\operatorname{top}};\mathbb{Q})$$

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (1)

Lie version of Kontsevich graph homology

By using theory of Outer Space due to Culler and Vogtmann:

Theorem (Kontsevich, Lie version)

$$PH_c^k(\widehat{\mathfrak{h}}_{\infty,1}^+)_{2n}^{\operatorname{Sp}} \cong H_{2n-k}(\operatorname{Out} F_{n+1}; \mathbb{Q}) \Rightarrow$$

$$H_c^*(\widehat{\mathfrak{h}}_{\infty,1}^+)^{\operatorname{Sp}} \cong \Lambda \left[\bigoplus_{n \geq 2} H_*(\operatorname{Out} F_n; \mathbb{Q}) \right]$$

Λ : free associative algebra

degree
$$(x) = 2n - 2 - k \ (x \in H_k(\text{Out } F_n; \mathbb{Q}))$$

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (2)

$$\bigoplus_{n\geq 2} H_{2n-3}(\operatorname{Out} F_n; \mathbb{Q}) \Leftrightarrow PH_c^1(\widehat{\mathfrak{h}}_{\infty,1}) \stackrel{\text{dual}}{\Leftrightarrow} H_1(\mathfrak{h}_{\infty,1}^+)_{\operatorname{Sp}}$$

Culler-Vogtmann: $vcd(Out F_n) = 2n - 3$

Problem

What are the generators: $H_1(\mathfrak{h}_{\infty,1}^+)$ for the Lie algebra $\mathfrak{h}_{\infty,1}^+$?

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (2)

$$\bigoplus_{n\geq 2} H_{2n-3}(\operatorname{Out} F_n; \mathbb{Q}) \Leftrightarrow PH_c^1(\widehat{\mathfrak{h}}_{\infty,1}) \stackrel{\operatorname{dual}}{\Leftrightarrow} H_1(\mathfrak{h}_{\infty,1}^+)_{\operatorname{Sp}}$$

Culler-Vogtmann: $vcd(Out F_n) = 2n - 3$

Problem

What are the generators: $H_1(\mathfrak{h}_{\infty,1}^+)$ for the Lie algebra $\mathfrak{h}_{\infty,1}^+$?

$$\bigoplus_{n>2} H_{2n-4}(\operatorname{Out} F_n; \mathbb{Q}) \Leftrightarrow PH_c^2(\widehat{\mathfrak{h}}_{\infty,1})$$

Problem

What is the second cohomology of the Lie algebra $\mathfrak{h}_{\infty,1}$?

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (3)

Cohomology of
$$\operatorname{Out} F_n$$
 and $H_1(\mathfrak{h}_{\infty,1}), H_c^2(\hat{\mathfrak{h}}_{\infty,1})$
Generators for $\mathfrak{h}_{g,1}^+ \ (= H_1(\mathfrak{h}_{g,1}^+))$:
 $\wedge^3 H_{\mathbb{O}} = \mathfrak{h}_{g,1}(1)$ Johnson

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (3)

Cohomology of
$$\operatorname{Out} F_n$$
 and $H_1(\mathfrak{h}_{\infty,1}), H_c^2(\hat{\mathfrak{h}}_{\infty,1})$

Generators for $\mathfrak{h}_{g,1}^+ \ (= H_1(\mathfrak{h}_{g,1}^+))$:

$$\wedge^3 H_{\mathbb{Q}} = \mathfrak{h}_{g,1}(1) \text{ Johnson}$$
 $\operatorname{traces:} \bigoplus_{k=1}^\infty S^{2k+1} H_{\mathbb{Q}} \operatorname{Morita}$

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (3)

Cohomology of
$$\operatorname{Out} F_n$$
 and $H_1(\mathfrak{h}_{\infty,1}), H_c^2(\hat{\mathfrak{h}}_{\infty,1})$

Generators for
$$\mathfrak{h}_{g,1}^+ \ (= H_1(\mathfrak{h}_{g,1}^+))$$
 :

$$\wedge^3 H_{\mathbb{Q}} = \mathfrak{h}_{g,1}(1)$$
 Johnson

traces:
$$\bigoplus_{k=1}^{\infty} S^{2k+1} H_{\mathbb{Q}}$$
 Morita

Theorem (Conant-Kassabov-Vogtmann)

$$\begin{array}{l} H_1(\mathfrak{h}_{g,1}^+) \cong \wedge^3 H_{\mathbb{Q}} \; (\textit{Johnson}, \, \text{0-loop}) \\ \hspace{0.5cm} \oplus \left(\oplus_{k=1}^{\infty} S^{2k+1} H_{\mathbb{Q}} \right) \; (\textit{M., trace maps: 1-loop}) \\ \hspace{0.5cm} \oplus \left(\oplus_{k=1}^{\infty} [2k+1,1]_{\operatorname{Sp}} \; \oplus \; \text{other part} \right) \; (\text{2-loops}) \\ \hspace{0.5cm} \oplus \; \; \text{non-trivial ?} \; \; (3,4,\ldots\text{-loops}) \quad \text{?: deep question} \end{array}$$

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (4)

Theorem (Bartholdi)

$$H_k(\text{Out } F_7; \mathbb{Q}) \cong \begin{cases} \mathbb{Q} \ (k = 0, 8, 11) \\ 0 \ (\textit{otherwise}) \end{cases}$$

$$\overset{\text{Kontsevich}}{\Rightarrow} \ H^1_c(\hat{\mathfrak{h}}_{\infty,1}^+)^{\operatorname{Sp}}_{12} \cong \mathbb{Q}$$

Sakasai-Suzuki-M. have given a direct proof of this fact without using Kontsevich's theorem, and furthermore

Kontsevich's theorem and homology of $Out F_n$ (4)

Theorem (Bartholdi)

$$H_k(\operatorname{Out} F_7; \mathbb{Q}) \cong \begin{cases} \mathbb{Q} \ (k = 0, 8, 11) \\ 0 \ (\textit{otherwise}) \end{cases}$$

$$\overset{\text{Kontsevich}}{\Rightarrow} \ H^1_c(\hat{\mathfrak{h}}_{\infty,1}^+)^{\operatorname{Sp}}_{12} \cong \mathbb{Q}$$

Sakasai-Suzuki-M. have given a direct proof of this fact without using Kontsevich's theorem, and furthermore

Theorem (Massuyeau-Sakasai)

- (i) $\mathcal{H}_{g,1} \stackrel{\text{homo.}}{\to} \hat{H}_1(\mathfrak{h}_{g,1}^+) \rtimes \operatorname{Sp}(2g,\mathbb{Z})$ with dense image
- (ii) $H_1(\mathcal{H}_{g,1};\mathbb{Q}) \neq 0$ (sharp contrast with: \mathcal{M}_g is perfect $(g \geq 3)$)

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (5)

Construction of elements of $H^2_c(\hat{\mathfrak{h}}_{\infty,1})$

trace maps :
$$\mathfrak{h}_{g,1}^+ \to \bigoplus_{k=1}^\infty S^{2k+1} H_{\mathbb{Q}}, \ H^2(S^{2k+1} H_{\mathbb{Q}})^{\operatorname{Sp}} \cong \mathbb{Q} \Rightarrow$$

$$\mathbf{t}_{2k+1} \in H_c^2(\widehat{\mathfrak{h}}_{\infty,1})_{4k+2} \stackrel{K.}{\cong} H_{4k}(\operatorname{Out} F_{2k+2}; \mathbb{Q})$$

$$\mu_k \in H_{4k}(\operatorname{Out} F_{2k+2}; \mathbb{Q}) \ (k=1,2,\ldots)$$
 Morita classes

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (5)

Construction of elements of $H^2_c(\hat{\mathfrak{h}}_{\infty,1})$

trace maps :
$$\mathfrak{h}_{g,1}^+ \to \bigoplus_{k=1}^\infty S^{2k+1} H_{\mathbb{Q}}, \ H^2(S^{2k+1} H_{\mathbb{Q}})^{\operatorname{Sp}} \cong \mathbb{Q} \Rightarrow$$

$$\mathbf{t}_{2k+1} \in H^2_c(\widehat{\mathfrak{h}}_{\infty,1})_{4k+2} \stackrel{K.}{\cong} H_{4k}(\operatorname{Out} F_{2k+2}; \mathbb{Q})$$

$$\mu_k \in H_{4k}(\operatorname{Out} F_{2k+2}; \mathbb{Q}) \ (k=1,2,\ldots)$$
 Morita classes

Theorem (non-triviality of μ_k)

$$\mu_1 \neq 0 \in H_4(\operatorname{Out} F_4; \mathbb{Q})$$
 (*M.* 1999)
 $\mu_2 \neq 0 \in H_8(\operatorname{Out} F_6; \mathbb{Q})$ (*Conant-Vogtmann 2004*)
 $\mu_3 \neq 0 \in H_{12}(\operatorname{Out} F_8; \mathbb{Q})$ (*Gray 2011*)

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (6)

 $H_*(\operatorname{Out} F_n;\mathbb{Q})$ computed for $n \leq 7$: only four non-trivial parts $H_4(\operatorname{Out} F_4;\mathbb{Q}) \cong \mathbb{Q} \quad (\mathsf{Hatcher\text{-}Vogtmann})$ $H_8(\operatorname{Out} F_6;\mathbb{Q}) \cong \mathbb{Q} \quad (\mathsf{Ohashi})$ $H_{11}(\operatorname{Out} F_7;\mathbb{Q}) \cong H_8(\operatorname{Out} F_7;\mathbb{Q}) \cong \mathbb{Q} \quad (\mathsf{Bartholdi})$

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (6)

 $H_*(\operatorname{Out} F_n;\mathbb{Q})$ computed for $n \leq 7$: only four non-trivial parts

$$H_4(\operatorname{Out} F_4; \mathbb{Q}) \cong \mathbb{Q}$$
 (Hatcher-Vogtmann)

$$H_8(\operatorname{Out} F_6; \mathbb{Q}) \cong \mathbb{Q}$$
 (Ohashi)

$$H_{11}(\operatorname{Out} F_7; \mathbb{Q}) \cong H_8(\operatorname{Out} F_7; \mathbb{Q}) \cong \mathbb{Q}$$
 (Bartholdi)

Conjecture (very difficult and important)

$$\mu_k \neq 0 \text{ for all } k \quad \left(\Rightarrow H^2_c(\hat{\mathfrak{h}}_{\infty,1}) \supset \mathbb{Q}\langle e_1, \mathbf{t}_3, \mathbf{t}_5, \cdots
angle
ight)$$

Theorem (Conant-Hatcher-Kassabov-Vogtmann)

The class μ_k is supported on certain subgroup $\mathbb{Z}^{4k} \subset \operatorname{Out} F_{2k+2}$

CKV new generators \Rightarrow more classes in $H^2_c(\hat{\mathfrak{h}}_{\infty,1})$

Kontsevich's theorem and homology of $Out F_n$ (7)

Many odd dimensional cohomology classes exist:

Theorem (Sakasai-Suzuki-M.)

The integral Euler characteristics of $Out F_n$ is given by

$$e(\text{Out } F_n) = 1, 1, 2, 1, 2, 1, 1, -21, -124, -1202 \ (n = 2, 3, \dots, 11)$$

The unique explicit one is: $H_{11}(\operatorname{Out} F_7; \mathbb{Q}) \cong \mathbb{Q}$ (Bartholdi)

Problem

Construct non-trivial odd dim. homology classes of $\operatorname{Out} F_n$

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (8)

Conjectural geometric meaning of the classes

$$\mu_k \in H_{4k}(\operatorname{Out} F_{2k+2}; \mathbb{Q})$$

Kontsevich's theorem and homology of $\operatorname{Out} F_n$ (8)

Conjectural geometric meaning of the classes

$$\mu_k \in H_{4k}(\operatorname{Out} F_{2k+2}; \mathbb{Q})$$

secondary classes associated with the difference between two reasons for the vanishing of Borel regulator classes

$$\beta_k \in H^{4k+1}(\mathrm{GL}(N,\mathbb{Z});\mathbb{R})$$

- (1) $\beta_k = 0 \in H^{4k+1}(\operatorname{Out} F_N; \mathbb{R})$ (Igusa, Galatius)
- (2) $\beta_k=0\in H^{4k+1}(\mathrm{GL}(N_k^*,\mathbb{Z});\mathbb{R})$ critical $N_k^*\stackrel{?}{=}2k+2$, yes for k=1 (Lee-Szczarba) and k=2 (E.Vincent-Gangl-Soulé)

Theorem (Bismut-Lott, Lee, Franke)

$$\beta_k = 0 \in H^{4k+1}\left(\operatorname{GL}(2k+1,\mathbb{Z});\mathbb{R}\right)$$

Characteristic classes of homological surface bundles (1)

 $ilde
ho_\infty$ on H^* yields many stable cohomology classes of $\mathcal{H}_{g,1}^{ ext{top}}$

$$H_c^*(\hat{\mathfrak{h}}_{g,1}^+)^{\operatorname{Sp}} \stackrel{Kontsevich}{\cong} \Lambda \left[\bigoplus_{n \geq 2} H_*(\operatorname{Out} F_n; \mathbb{Q}) \right] \Rightarrow$$

Characteristic classes of homological surface bundles (1)

 $ilde
ho_\infty$ on H^* yields many stable cohomology classes of $\mathcal{H}_{g,1}^{ ext{top}}$

$$H_c^*(\hat{\mathfrak{h}}_{g,1}^+)^{\operatorname{Sp}} \stackrel{Kontsevich}{\cong} \Lambda \left[\bigoplus_{n \geq 2} H_*(\operatorname{Out} F_n; \mathbb{Q}) \right] \Rightarrow$$

Theorem (Sakasai-Suzuki-M.)

$$\tilde{\rho}_{\infty}^* : \Lambda \left[\bigoplus_{n \geq 2} H_*(\operatorname{Out} F_n; \mathbb{Q}) \right] \otimes H^*(\operatorname{Sp}(2\infty, \mathbb{Q})) \to H^*(\mathcal{H}_{g,1}^{\text{top}}; \mathbb{Q})$$

Corollary

The MMM-classes are defined already in $H^*(\mathcal{H}_{g,1}^{\text{top}},\mathbb{Q})$

Characteristic classes of homological surface bundles (2)

Comparison with the case of the mapping class group:

The image of the homomorphism

$$\rho_{\infty}^* : \Lambda \left[\bigoplus_{n \geq 2} H_*(\operatorname{Out} F_n; \mathbb{Q}) \right] \otimes H^*(\operatorname{Sp}(2\infty, \mathbb{Z}); \mathbb{Q})$$
$$\to H^*(\mathcal{M}_{g,1}; \mathbb{Q})$$

consists of stable classes $\overset{\mathrm{Madsen-Weiss}}{\Rightarrow}$

$$\operatorname{Im} \rho_{\infty}^* = \mathcal{R}^*(\mathcal{M}_{g,1}) = \langle \operatorname{MMM} - \operatorname{classes} \rangle$$
 (tautological algebra)
 $\Rightarrow \rho_{\infty}^*$ has a big kernel

Characteristic classes of homological surface bundles (3)

Comparison with higher dimensional cases:

Theorem (Berglund-Madsen)

For any d: odd ≥ 3

$$\Lambda \left[\bigoplus_{n \geq 2} H_*(\operatorname{Out} F_n; \mathbb{Q}) \right]^{(d)} \otimes H^*(\operatorname{Sp}(2\infty, \mathbb{Z}); \mathbb{Q})$$

 $\stackrel{isomorphism}{\sim}$

$$\lim_{q \to \infty} H^*(\operatorname{Baut}_{\partial}(\sharp_g(S^d \times S^d) \setminus \operatorname{Int} D^{2d}); \mathbb{Q})$$

degree
$$(x) = 2nd - 2 - k \ (x \in H_k(\text{Out } F_n; \mathbb{Q}))$$

Characteristic classes of homological surface bundles (4)

Definition (most important characteristic classes)

$$\tilde{\mathbf{t}}_{2k+1} = \tilde{\rho}_{\infty}^*(\mu_k) \in H^2(\overline{\mathcal{H}}_{g,1}; \mathbb{Q}), H^2(\mathcal{H}_{g,1}^{\text{top}}; \mathbb{Q}) \quad (k = 1, 2, \ldots)$$

most important classes coming from $H^2(S^{2k+1}H_{\mathbb{Q}})^{\operatorname{Sp}}\cong \mathbb{Q}$

candidates for
$$\chi(\mathcal{H}_{q,1}^{\text{smooth}}) \in H^2(\overline{\mathcal{H}}_{q,1}; \Theta^3)$$

group version of $\mathbf{t}_{2k+1} \in H^2_c(\hat{\mathfrak{h}}_{\infty,1})$ defined earlier

Characteristic classes of homological surface bundles (5)

geometrical meaning of the classes $\tilde{\mathbf{t}}_{2k+1} \in H^2(\mathcal{H}^{\text{top}}_{g,1};\mathbb{Q})$:

Intersection numbers of higher and higher Massey products (using works of Kitano, Garoufalidis-Levine)

Characteristic classes of homological surface bundles (5)

geometrical meaning of the classes $\tilde{\mathbf{t}}_{2k+1} \in H^2(\mathcal{H}^{\text{top}}_{g,1};\mathbb{Q})$:

Intersection numbers of higher and higher Massey products (using works of Kitano, Garoufalidis-Levine)

Conjecture

In the central extension

$$0 \to \mathbf{\Theta}^3 \to \mathcal{H}_{g,1}^{\mathbf{smooth}} \to \overline{\mathcal{H}}_{g,1} \to 1$$

 $oldsymbol{\Theta}^3$ "transgresses" to the classes $ilde{\mathbf{t}}_{2k+1} \in H^2(\overline{\mathcal{H}}_{g,1};\mathbb{Q}) \ \Rightarrow$

$$\tilde{\mathbf{t}}_{2k+1} \neq 0 \in H^2(\overline{\mathcal{H}}_{g,1};\mathbb{Q}), H^2(\mathcal{H}^{\mathsf{top}}_{g,1};\mathbb{Q})$$
 and $\tilde{\mathbf{t}}_{2k+1} = 0 \in H^2(\mathcal{H}^{\mathsf{smooth}}_{g,1};\mathbb{Q})$

Prospect

$$\rho_{\infty}^*(3e_1-c_1)=0\in H^2(\mathcal{M}_{g,1};\mathbb{Q})\Rightarrow$$
 secondary invariant:

Casson invariant λ for homology 3-spheres

Prospect

$$\rho_{\infty}^*(3e_1-c_1)=0\in H^2(\mathcal{M}_{g,1};\mathbb{Q})\Rightarrow$$
 secondary invariant:

Casson invariant λ for homology 3-spheres

If Conjecture is true ⇒ obtain homomorphisms

$$\nu_k: \mathbf{\Theta}^3 \to \mathbb{Q} \quad (k=1,2,\ldots)$$

homology cobordism invariants