On two embedding theorems concerning

right-angled Artin groups

Takuya Katayama

Hiroshima University

Topology and Geometry of Low-dimensional Manifolds
Nara Women's University, October 27, 2016

Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems



The table of contents

|. Introduction —embeddings between RAAGs-
lI. Proofs of main results

[Il. Embeddings of RAAGs into mapping class
groups

Two Embedding Theorems



The table of contents

|. Introduction —embeddings between RAAGs-
lI. Proofs of main results

[Il. Embeddings of RAAGs into mapping class
groups

Two Embedding Theorems



Right-angled Artin groups

I a finite (simplicial) graph

V() ={vi,vs, -+, v,}: the vertex set of

E(I): the edge set of

Definition

The right-angled Artin group (RAAG) on T is the group given by the
following presentation:

M) =(vi,va,...,vy | [vi,vj] =1if {vi,v;} & E(I)).

G(rl) = G(rz) if and onIy if Fl = r2.

(%)
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P,: the path graph consisting of n vertices Pn

Example

G(P)=Z
G(PLUP UP)x=Z3
(P1|_|P2) 7 X F2
G(o—e—o )NZ2*Z
(V) =

Note: G(IN) = (v, va,..., v, | [vi,v]]=11if {vi,v;} € E(T))

G
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Motivation and main results

Problem (Crisp-Sageev-Sapir, 2008)

For given two finite graphs A\ and I, decide whether G(N\) can be
embedded into G(T).

The following is standard.

Proposition

N, T finite graphs
IfN<T, then G(N\) — G(I).
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Proposition

N, T finite graphs
IfN<T, then G(N\) — G(T).

A subgraph A of a graph I is said to be full if E(A) contains every
e € E(I') whose end points both lie in V(A).
We denote by A < I"if A is a full subgraph of T.
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Proposition

N, T finite graphs
If N <T, then G(N\) — G(T).

In general, the converse implication “G(A) — G(IN)" = "N <T"is
false.

Example
(V)= F— R, = G(P). J

So the following question naturally arises.

Question

Which finite graph A satisfies the following property (x)?
(x) For any finite graph ', “"G(A) — G(I')" = “A<T".
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Question

Which finite graph A satisfies the following property (x)?
(x) For any finite graph ', “"G(A) — G(I')" = “A<T".

The following gives a complete answer to the above question.
A finite graph A is said to be a linear forest if each connected
component of A is a path graph.

Theorem A (K.)

Let A be a finite graph.

(1) If N\ is a linear forest, then \ has property (x),
ie, VI, if G(N) — G(I'), then N <T.

(2) If N is not a linear forest, then A\ does not have property (x),
i.e., 3 such that G(N\) — G(I'), though N £ T.
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Theorem A (K.)

Let A be a finite graph.

(1) If N\ is a linear forest, then
VT, the relation G(N) — G(I') implies the relation N <T.

(2) If N\ is not a linear forest, then
ar such that G(N) — G(I'), though N £ T.

Application of Thm A(1) to concrete embedding problems

o ~(Z2*Z — Fy x Fy x -+ X ).

Proof) Suppose to the contrary that Z? * Z — Fy x Fy x -+ X Fy.
Then since P; is a linear forest, Theorem A(1) implies

P; < P,UP,U---U Py, a contradiction. Q.E.D.

Note: G(P3) = Z? x Z and

G(PRRUPU---UP) = F X Fyx- X Fp.

Similarly, we have —(F, X Fy X -+ x Fy — Z? % 7).
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Appl of Thm A(1) (cont'd).

° —|(G(/\1) — G(/\2))

Proof) Suppose to the contrary that G(A;) — G(A2).

Then since P; LI Py < Ay, we have G(Py U P) — G(A;).

Hence, G(Py U Py) — G(N\y).

This together with Theorem A(1) implies P; LI Py < Ay, which is
impossible. Q.E.D__:

So Theorem A(1) is sometimes valid to decide whether the RAAG, on
a graph which is not a linear forest, embeds into another RAAG.
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Appl of Thm A(1) (cont'd).

) —|(G(/\2) —> G(/\l))

Proof) Use

a) P1|_|P1L|P1[_|P1§/\2,

i.e., G(P1 L P1 L P1 (] Pl) — G(/\Q) and

b) Py LUIPLIPLIP £ A,

i.e., G(PyU Py LU Py U Py) cannot be embedded into G(A;). Q.E.D.

A
Thus we obtain —=(G(A;1) = G(Ay)) and =(G(Ay) — G(A1)).
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Theorem A(1)

Let A be a finite graph.
If N\ is a linear forest, then
VT, the relation G(N) — G(I') implies the relation N <T.

For some special linear forests, Theorem A(1) is known.
e AN=PUP U---UUP; [Servatius, 1989]
e AN=P;3, Py, P,UP, [Kim-Koberda, 2013]
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Theorem A(2)

Let A\ be a finite graph.
If \ is not a linear forest, then
3r such that G(N) — G(TI'), though A £ T.

Theorem A(2) is known in the case A contains a cycle.

Theorem (Kim-Koberda, 2015)

N\: a finite graph
Then there exists a finite tree T such that G(N) — G(T).

Hence, we have only to prove Theorem A(2) in the following case.
e Case: A is a forest containing a vertex of deg > 3.
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e Case: A is a forest containing a vertex of deg > 3.

Today, instead of the proof of Theorem A(2) itself, | explain the
proof of the following partial result of Theorem A(2).

Theorem B (K.)
T: a finite tree
Then there exists a finite tree T' satisfying the following.
(1) G(T)— G(T").
(2) deg.(T") < 3, where

deg . (T") = max{m |m = deg(v), v € V(T")}.
(3) [T <2|T| -4

Note that if deg,..(T) > 3, then we have T £ T".
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By combining Kim-Koberda's embedding theorem and Theorem B,
we have the following.

Theorem ([Kim-Koberda, 2015] + Thm B)

N\: a finite graph

Then there exists a finite tree T such that G(\) — G(T) and
degmax( T/) S 3

[Wise, 2011],[Agol, 2014], [Kim-Koberda, 2015] + Thm B

Corollary

M: a complete hyperbolic 3-manifold with finite volume
Then 1(M) is virtually embedded into G(T) for some finite tree T
with deg,,...(T) < 3.
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Main results

Theorem A (K.)
Let A\ be a finite graph.

(1) If N is a linear forest, then

VI, the relation G(N) — G(I') implies the relation N <T.
(2) If N is not a linear forest, then
ar such that G(N) — G(I'), though N £ T.

Theorem B (K.)

T: a finite tree

Then there exists a finite tree T' satisfying the following.
(1) G(T)— G(T").

(2) degua(T') < 3.

(3) [T <2|T| -4
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Moreover, we obtain the following as a consequence of Theorem A(1).

Theorem C (K.)

A: a linear forest
If G(N) = M(Xgz,), then N < C(X;,,).

This is a partial converse of the following embedding theorem.

Theorem (Koberda, 2012)

A\: a finite graph
If A < C°(%,,,), then G(N) — M(X; )
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Theorem A(1)

A: a linear forest
I": a finite graph
If G(N) — G(I'), then A <T.

Sketch of proof.

Step 1. Prove A < T'¢, where T¢ is a graph such that

o V([e)={gtuge G(N | uec V(), g G(IN}.

e 1% and v" span an edge < v and v" are not commutative.
Theorem (Casals-Ruiz, 2015)
For a forest A and a finite graph T, if G(A) — G(I), then A < Te.

Step 2. Prove that A < T implies A <T.
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Step 2. Prove that A < ¢ implies A < T.

Use the “finiteness” of I'e.
Theorem (Kim-Koberda, 2013)

If N < Te, then there exists a sequence of consecutive ‘“co-doubles”

M=To<M <M< <T,<Te
such that T; = D([;_1) and A < T,

Here, for a finite graph A,
D(A) := (D(A))".

The operation c: “taking the complement graph”.
The operation D: “taking the double graph along the star subgraph
of a vertex”
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Step 2. Prove that A < T implies A < T (cont'd).

Use the “finiteness’ of Te.

Theorem (Kim-Koberda, 2013)

If N < Te, then there exists a sequence of consecutive ‘co-doubles”

[=To<M <M< <T,<Te
such that T; = D([;_1) and A < T,

Proposition (K.)

A: a lin_ear forest, A: a finite graph
If N < D(A), then N < A.

Theorem A(1)

N: a linear forest, [I: a finite graph
If G(N) — G(I'), then A <T.
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Theorem B

T: a finite tree

Then there exists a finite tree T' satisfying the following.
(1) G(T)— G(T').

(2) degpa(T') <3.

(3) |T'| <2|T| -4

e Sketch of proof.

T: a finite tree with deg, .. (T) > 3.
We would like to find a finite tree T’ satisfying (1), (2) and (3)...
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Pick a vertex u of deg >3 in T. By splitting u as follows, we obtain

the new finite tree T.

— v

T T
Note that, for the vertices u and v, we have
deg(u, T) = deg(u, T) — 1
deg(v, 'f') 3

24 / 47
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~

T T
Then we can prove T < D(T), and so G(T) — G(D(T)).

Lemma (Kim-Koberda)
For any finite graph T, we have G(D(')) < G(T). J

Thus G(T) — G(T).
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By repeating this argument, we have a finite tree T’ such that
G(T) < G(T') and that T’ consists only of the vertices of deg at
most 3.

Remark

In this argument, we do not need the assumption that T is a tree.
However, to deduce the assertion (3), we need the assumption.

Theorem B

T: a finite tree
Then there exists a finite tree T' satisfying the following.

(1) G(T) = G(T).
(2) deguax(T') < 3.
(3) IT| <2|T| -4

Remark: (3) is best possible.
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The mapping class groups of surfaces

Y . n: the orientable compact surface of genus g with n punctures
We assume x(X,,) < 0.
The mapping class group of ¥ , is defined as follows.

M(X,.) = mo(Homeo™ (X,.,))

a: an essential simple loop on 3, ,
T, the Dehn twist along «

G

Theorem (Dehn-Lickorish)
Dehn twists on ¥, , generate M(X, ).
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The complement graph of the curve graph of 2, ,

The complement graph of the curve graph C(X; ,) is a graph such
that

o V(C(X4,n)) = {isotopy classes of esls on ¥, ,}
e esls a, § span an edge iff a, 5 CANNOT be realized disjointly.

COD9) ee—ss
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Theorem A(1) implies Theorem C

Theorem A(1)

A\: a linear forest
[': a finite graph
If G(N) — G(I'), then A <T.

Theorem C

A: a linear forest
If G(N) = M(Xg,), then N < C(X;,,).
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The embedding theorem due to Koberda

Theorem (Koberda, 2012)
A\: a finite graph
Then the following hold.

(1) If N < C(Xg.0), G(N) = M(X;,).
(2) There exists a compact surface ¥ such that G(\) — M(X).

The following lemma follows from Koberda's embedding theorem.

Lemma (Koberda)

A\: a finite graph

If G(N) = M(X;.,), then there exists a finite full subgraph
[ < C(Xgn) such that G(A) — G(I).
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Lemma (Koberda)

N\: a finite graph
If G(N) = M(Xg,,), then there exists a finite full subgraph
I < C(X4n) such that G(A) — G(I).

Theorem C

N: a linear forest
If G(N) — M(ng), then \ < CC(ng).

Proof.

A: a linear forest

Suppose G(A) — M(X, ).

Then I < C°(X;,,): a finite full subgraph; G(A) — G(I).

Theorem A(1) now implies A < T'(< C°(X%,,,)), as desired. O
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Theorem ([Koberda, 2012] + Thm C)

A: a linear forest
Then G(N) — M(X,.,) if and only if N < C(X,,).

We can regard the above theorem as a generalization of the following
classical result.

Theorem (Birman-Lubotzky-McCarthy, 1983)

The maximum rank of free abelian subgroup of M(X, ) is bounded
by the number of simple closed curves needed in the
pants-decomposition of ¥, , (=3g +n—3 =:§).
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Theorem (BLM)

The maximum rank of free abelian subgroup of M(X, ) is bounded
by the number of simple closed curves needed in the
pants-decomposition of ¥z .

In our terminology, Birman-Lubotzky-McCarthy's obstruction can be
translated as follows.

Theorem (BLM in our terminology)

N\: the disjoint union of finitely many copies of Py
Then G(N) — M(X,.,) if and only if N < C(X,.n).

If A'is the disjoint union of finitely many copies of Py, then

G(N) = zZIN.

Moreover, A < C¢(%, ,) means disjointly represented simple closed
curves on Yz .
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Theorem ([Koberda, 2012] + Thm C)

N: a linear forest
Then G(N) — M(X;,) if and only if N < C(%,4.5).

Hence, our obstruction theorem generalizes
Birman-Lubotzky-McCarty's.
Theorem (BLM in our terminology)

N\: the disjoint union of finitely many copies of P,
Then G(N) — M(X,.,) if and only if N < C(Xg.n).
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Linear chains on surfaces

Lp={a1,00,...,am}: asetof eslson X, ,
L, C Xz, is said to be a linear chain

b= a; and ;11 cannot be realized disjointly.
e «;and o (i +2 < j) can be realized disjointly.

COD D) s—s—ss

L(Xz,) : = max{m |L, C Xz ,: a linear chain}
= max{m |P, < C(Xz,)}
= max{m |G(Pn) — M(%;,,)}
L(Xg0)) =777
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Proposition
If g =0, we have the following.

2 n=24
n—1 n>5

L(ZO,n)) = {

This picture shows L(X4)) > 2.

To see L(Xg4)) = 2, suppose to the contrary that L(Xo4)) > 3.
Then there exists a linear chain L3 = {ay, a2, a3} C Lg4.

We may assume that a3 and « is disjointly represented.

Then a3 divide Y44 into two surfaces, >3 and X5, not containing
an esl, though a; must be contained in either 23 or 2¢5.
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(] L(Zo’5)) =4,
For L(Xo,)) > 4, see the picture below.

Suppose to the contrary that L(%,,)) > 5.

Then there exists a linear chain of length 5, Ls = {ay, an, a3, g, s },
on 2075.

We may assume that as and a; U ap U a3 are disjointly represented.
Since as is a separating curve, as divide X5 into X4 and Y.
Hence, the linear chain L3 := {a1, @, a3} is contained in either X 4.
However, this is impossible.
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By an inductive argument, we yield:

Proposition
If g = 0, we have the following.

L(ZO,n): {2 n=4

n—1 n>5

Since L(Xo6) =5, G(Ps) cannot be embedded into M(Xq¢).
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Further studies (1/4)

Question
L(Tgn) = max{m |G(Pn) = M(Ty,0)} =777

If either genus g or the number of punctures n is equal to 0,

L(X0,)=n—1(n>5)
L(Xg.0) 3 26+1(g=>2).

In general,
L(Xgn) = —X(Zgn)?
More precisely,
IL(Zgn) — IX(Zgn)| | <37
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Further studies (2/4)

Theorem (Kim-Koberda, 2014)

(1) A: a finite graph
If £(X4.0) < 3, then G(N) — M(X;,,) if and only if
A< CS(Zgn).

(2) If &(Xz,) > 3, then there exist a finite graph A such that
G(N) — M(X,,,) but N £ C(X,,).

Kim-Koberda said, “we do not know how to resolve the case £ = 3".
Since L(Xo6) =5, G(Ps) cannot be embedded into M(Xq5).
(I think) studying unembeddability is valid to resolve the case £ = 3...
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Further studies (3/4)

C,: the cyclic graph on n vertices
Theorem A(1) directly implies that, for any finite graph T, if
G(Gs) = G(I), then P, <T.

Conjecture (Casals-Ruiz)

[": a finite graph
Then G(I') contains the fund group of a closed hyp surface if and
only if G(I') contains G(Cf) for some n > 5.

Note: C§ = Gs.

Theorem (Servatius-Droms-Servatius)

For any n > 5, G(Ct) contains the fund group of a closed hyp
surface.
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Conjecture (Casals-Ruiz)

[': a finite graph
Then G(I') contains the fund group of a closed hyp surface if and
only if G(I') contains G(CS) for some n > 5.

At this time, we have no counter-example of the “only if" part.
However, for example, which RAAG contains G(Gs)?

G(Gs) — G(Pg) (Casals-Ruiz) and =(G(Gs) < G(P4)) (Droms).
A concrete problem: we do not know whether G(Cs) embeds into
G(P,) for5<Vn<T.
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Further studies (4/4)

Theorem ([Kim-Koberda, 2015] + Thm B)

N\: a finite graph

Then there exists a finite tree T such that G(\) — G(T) and
degmax( T,) S 3

Question (Lee, 2016)
For any finite graph A, is it possible that G(A) < G(P,) for some n?

v

(I think) it's only a matter of time...

Theorem (Casals-Ruiz, 2015)
For a forest A and a finite graph T, if G(A) — G(I), then A < Te.
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Thank you very much for your attention!
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