On two embedding theorems concerning right-angled Artin groups

Takuya Katayama

Hiroshima University

Topology and Geometry of Low-dimensional Manifolds Nara Women's University, October 27, 2016

Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems 1 / 47

K ロ X - K 제품 X 제품 X 기본 및 및 X 이익만

The table of contents

I. Introduction –embeddings between RAAGs–

II. Proofs of main results

III. Embeddings of RAAGs into mapping class groups

The table of contents

I. Introduction –embeddings between RAAGs– II. Proofs of main results

III. Embeddings of RAAGs into mapping class groups

Right-angled Artin groups

Γ: a finite (simplicial) graph

V(Γ) = { v_1, v_2, \cdots, v_n }: the vertex set of Γ *E*(Γ): the edge set of Γ

Definition

The right-angled Artin group (RAAG) on Γ is the group given by the following presentation:

 $G(\Gamma) = \langle v_1, v_2, \ldots, v_n \mid [v_i, v_j] = 1 \text{ if } \{v_i, v_j\} \notin E(\Gamma) \rangle.$

 $G(\Gamma_1) \cong G(\Gamma_2)$ if and only if $\Gamma_1 \cong \Gamma_2$.

Pn: the path graph consisting of *n* vertices

Example $G(P_1) ≅ \mathbb{Z}$ $G(P_1 \sqcup P_1 \sqcup P_1) \cong \mathbb{Z}^3$ $G(P_1 \sqcup P_2) \cong \mathbb{Z} \times F_2$ $G(\bullet \rightarrow \bullet) \cong \mathbb{Z}^2 * \mathbb{Z}$ $G(\nabla) \cong F_3$

Note: $G(\Gamma) = \langle v_1, v_2, \ldots, v_n \mid [v_i, v_j] = 1 \text{ if } \{v_i, v_j\} \notin E(\Gamma) \rangle$

Pn

Motivation and main results

Problem (Crisp-Sageev-Sapir, 2008)

For given two finite graphs Λ *and* Γ*, decide whether G*(Λ) *can be embedded into G*(Γ)*.*

The following is standard.

Proposition

Λ*,* Γ*: finite graphs If* $Λ \le Γ$ *, then* $G(Λ) \hookrightarrow G(Γ)$ *.*

Proposition

Λ*,* Γ*: finite graphs If* $Λ ≤ Γ$ *, then* $G(Λ)$ \hookrightarrow $G(Γ)$ *.*

A subgraph Λ of a graph Γ is said to be full if *E*(Λ) contains every *e ∈ E*(Γ) whose end points both lie in *V*(Λ). We denote by Λ *≤* Γ if Λ is a full subgraph of Γ.

Proposition

Λ*,* Γ*: finite graphs If* $Λ \le Γ$ *, then* $G(Λ) \hookrightarrow G(Γ)$ *.*

In general, the converse implication $"G(\Lambda) \hookrightarrow G(\Gamma)" \Rightarrow " \Lambda \leq \Gamma"$ is false.

Example

$$
G(\nabla)\cong F_3\hookrightarrow F_2\cong G(P_2).
$$

So the following question naturally arises.

Question

Takuya Katayama (Hiroshima Univ.

Which finite graph Λ satisfies the following property (*∗*)? $(*)$ For any finite graph Γ, " $G(Λ)$ → $G(Γ)$ " \Rightarrow " $Λ \le Γ$ ".

Question

Which finite graph Λ satisfies the following property (*∗*)? $(*)$ For any finite graph Γ, " $G(Λ)$ \hookrightarrow $G(Γ)$ " \Rightarrow " $Λ \le Γ$ ".

The following gives a complete answer to the above question. A finite graph Λ is said to be a linear forest if each connected component of Λ is a path graph.

Theorem A (K.)

Let Λ *be a finite graph.*

- *(1) If* Λ *is a linear forest, then* Λ *has property* (*∗*)*, i.e.*, \forall Γ, *if* $G(\Lambda)$ \hookrightarrow $G(\Gamma)$, *then* $\Lambda \leq \Gamma$ *.*
- *(2) If* Λ *is not a linear forest, then* Λ *does not have property* (*∗*)*, i.e.*, $∃Γ$ *such that* $G(Λ)$ \hookrightarrow $G(Γ)$ *, though* $Λ$ $≤$ Γ*.*

メロメ メタメ メミメ メミメ

Theorem A (K.)

Let Λ *be a finite graph.*

- *(1) If* Λ *is a linear forest, then ∀*Γ*, the relation* $G(Λ)$ \hookrightarrow $G(Γ)$ *<i>implies the relation* $Λ ≤ Γ$ *.*
- *(2) If* Λ *is not a linear forest, then* $∃Γ$ *such that* $G(Λ)$ \hookrightarrow $G(Γ)$ *, though* $Λ$ $≤$ Γ*.*

Application of Thm A(1) to concrete embedding problems

• $\neg(\mathbb{Z}^2 * \mathbb{Z} \hookrightarrow F_2 \times F_2 \times \cdots \times F_2).$ Proof) Suppose to the contrary that $\mathbb{Z}^2 * \mathbb{Z} \hookrightarrow F_2 \times F_2 \times \cdots \times F_2$. Then since P_3 is a linear forest, Theorem $A(1)$ implies $P_3 \leq P_2 \sqcup P_2 \sqcup \cdots \sqcup P_2$, a contradiction. Q.E.D. Note: $G(P_3) ≅ \mathbb{Z}^2 * \mathbb{Z}$ and $G(P_2 \sqcup P_2 \sqcup \cdots \sqcup P_2) \cong F_2 \times F_2 \times \cdots \times F_2.$ Similarly, we have $\neg(F_2 \times F_2 \times \cdots \times F_2 \hookrightarrow \mathbb{Z}^2 * \mathbb{Z})$. K 로 K 제품 K 및 로 - KD Q <mark>Q</mark>

Appl of Thm A(1) (cont'd).

 $\bullet \ \neg(G(\Lambda_1) \hookrightarrow G(\Lambda_2)).$ Proof) Suppose to the contrary that $G(\Lambda_1) \hookrightarrow G(\Lambda_2).$ $\textsf{Then since } P_1 \sqcup P_4 \leq \Lambda_1\text{, we have } G(P_1 \sqcup P_4) \hookrightarrow G(\Lambda_1).$ H ence, $G(P_1 \sqcup P_4) \hookrightarrow G(\Lambda_2)$. This together with Theorem A(1) implies $P_1 \sqcup P_4 \leq \Lambda_2$, which is impossible. Q.E.D.

So Theorem A(1) is sometimes valid to decide whether the RAAG, on a graph which is not a linear forest, embeds into another RAAG.

KO K K (DIK K E K K E K K K K K K K K K K K Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems 12 / 47

Theorem A(1)

Let Λ *be a finite graph. If* Λ *is a linear forest, then ∀*Γ*, the relation G*(Λ) *,→ G*(Γ) *implies the relation* Λ *≤* Γ*.*

For some special linear forests, Theorem $A(1)$ is known.

- *•* Λ = *P*¹ *⊔ P*¹ *⊔ · · · ⊔ P*¹ [Servatius, 1989]
- *•* Λ = *P*3*, P*4*, P*² *⊔ P*² [Kim-Koberda, 2013]

Theorem A(2)

Let Λ *be a finite graph. If* Λ *is not a linear forest, then* $∃Γ$ *such that* $G(Λ)$ \hookrightarrow $G(Γ)$ *, though* $Λ$ $≤$ Γ*.*

Theorem $A(2)$ is known in the case Λ contains a cycle.

Theorem (Kim-Koberda, 2015)

Λ*: a finite graph Then there exists a finite tree T such that* $G(\Lambda) \hookrightarrow G(T)$ *.*

Hence, we have only to prove Theorem A(2) in the following case.

• Case: Λ is a forest containing a vertex of deg *≥* 3.

• Case: Λ is a forest containing a vertex of deg *≥* 3.

Today, instead of the proof of Theorem A(2) itself, I explain the proof of the following partial result of Theorem A(2).

Theorem B (K.) *T: a finite tree Then there exists a finite tree T ′ satisfying the following.* (1) $G(T) \hookrightarrow G(T')$. (2) $\deg_{\max}(T') \leq 3$, where $\deg_{\max}(T') = \max\{m \mid m = \deg(v), v \in V(T')\}.$ (3) $|T'| \leq 2|T| - 4$.

Note that if $\deg_{\max}(\mathcal{T}) > 3$, then we have $\mathcal{T} \not\leq \mathcal{T}'$.

By combining Kim-Koberda's embedding theorem and Theorem B, we have the following.

Theorem ($[Kim-Koberda, 2015] + Thm B$)

Λ*: a finite graph Then there exists a finite tree T such that* $G(\Lambda) \hookrightarrow G(T)$ *and* $\deg_{\max}(T') \leq 3$ *.*

[Wise, 2011],[Agol, 2014], [Kim-Koberda, 2015] + Thm B

Corollary

M: a complete hyperbolic 3-manifold with finite volume Then $\pi_1(M)$ *is virtually embedded into* $G(T)$ *for some finite tree* T *with* $\deg_{\max}(T) \leq 3$ *.*

 OQ

Main results

Theorem A (K.)

Let Λ *be a finite graph.*

- *(1) If* Λ *is a linear forest, then ∀*Γ*, the relation G*(Λ) *,→ G*(Γ) *implies the relation* Λ *≤* Γ*.*
- *(2) If* Λ *is not a linear forest, then* $∃Γ$ *such that* $G(Λ)$ \hookrightarrow $G(Γ)$ *, though* $Λ$ $≤$ Γ*.*

Theorem B (K.)

T: a finite tree Then there exists a finite tree T ′ satisfying the following. (1) $G(T) \hookrightarrow G(T')$. $(2) \deg_{\max}(T') \leq 3.$

 (3) $|T'| \leq 2|T| - 4$.

Moreover, we obtain the following as a consequence of Theorem A(1).

Theorem C (K.) Λ*: a linear forest If* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$, then $\Lambda \leq C^c(\Sigma_{g,n})$.

This is a partial converse of the following embedding theorem.

Theorem (Koberda, 2012)

Λ*: a finite graph If* $\Lambda \leq C^c(\Sigma_{g,n})$, then $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$

The table of contents

I. Introduction –embeddings between RAAGs– (finished)

II. Proofs of main results

III. Embeddings of RAAGs into mapping class

groups

Theorem A(1)

Λ*: a linear forest* Γ*: a finite graph If* $G(\Lambda) \hookrightarrow G(\Gamma)$ *, then* $\Lambda \leq \Gamma$ *.*

Sketch of proof.

Step 1. Prove Λ *≤* Γ *e* , where Γ *e* is a graph such that

- \bullet *V*($\overline{\Gamma}^e$) = { $g^{-1}ug \in G(\Gamma) \mid u \in V(\Gamma), g \in G(\Gamma)$ }.
- *u^g* and *v*^{*h*} span an edge $\Leftrightarrow u^g$ and *v*^{*h*} are not commutative.

Theorem (Casals-Ruiz, 2015)

For a forest Λ *and a finite graph* Γ *, if* $G(\Lambda) \hookrightarrow G(\Gamma)$ *, then* $\Lambda \leq \overline{\Gamma^e}$ *.*

Step 2. Prove that Λ *≤* Γ *e* implies Λ *≤* Γ.

Step 2. Prove that Λ *≤* Γ *e* implies Λ *≤* Γ.

Use the "finiteness" of Γ *e* .

Theorem (Kim-Koberda, 2013)

If Λ \leq Γ^ε, then there exists a sequence of consecutive "co-doubles"

$$
\Gamma = \Gamma_0 \leq \Gamma_1 \leq \Gamma_2 \leq \cdots \leq \Gamma_n \leq \overline{\Gamma^e}
$$

such that $\Gamma_i = \overline{D}(\Gamma_{i-1})$ *and* $\Lambda \leq \Gamma_n$ *.*

Here, for a finite graph Δ ,

 $\overline{D}(\Delta) := (D(\Delta^c))^c$.

The operation *c*: "taking the complement graph".

The operation *D*: "taking the double graph along the star subgraph of a vertex"

 \equiv 940 メロトメ 御 トメ 差 トメ 差 ト Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems 21 / 47

Step 2. Prove that Λ *≤* Γ *e* implies Λ *≤* Γ (cont'd).

Use the "finiteness" of Γ *e* .

Theorem (Kim-Koberda, 2013)

If Λ \leq Γ^ε, then there exists a sequence of consecutive "co-doubles"

 $\Gamma = \Gamma_0 \leq \Gamma_1 \leq \Gamma_2 \leq \cdots \leq \Gamma_n \leq \overline{\Gamma^e}$

such that $\Gamma_i = \overline{D}(\Gamma_{i-1})$ *and* $\Lambda \leq \Gamma_n$ *.*

Proposition (K.)

Λ*: a linear forest,* ∆*: a finite graph If* $\Lambda \leq \overline{D}(\Delta)$ *, then* $\Lambda \leq \Delta$ *.*

Theorem A(1)

Λ*: a linear forest,* Γ*: a finite graph If* $G(\Lambda) \hookrightarrow G(\Gamma)$ *, then* $\Lambda \leq \Gamma$ *.*

Theorem B

T: a finite tree Then there exists a finite tree T ′ satisfying the following. (1) $G(T) \hookrightarrow G(T')$. $(2) \deg_{\max}(T') \leq 3.$ (3) $|T'| \leq 2|T| - 4$.

• Sketch of proof.

T: a finite tree with $deg_{max}(T) > 3$. We would like to find a finite tree *T ′* satisfying (1), (2) and (3)...

Pick a vertex *u* of deg *>* 3 in *T*. By splitting *u* as follows, we obtain the new finite tree $\tilde{\tau}$.

Note that, for the vertices *u* and *v*, we have

$$
\deg(u, \tilde{T}) = \deg(u, T) - 1
$$

$$
\deg(v, \tilde{T}) = 3
$$

By repeating this argument, we have a finite tree *T ′* such that $G(T) \hookrightarrow G(T')$ and that T' consists only of the vertices of deg at most 3.

Remark

In this argument, we do not need the assumption that T is a tree. However, to deduce the assertion (3), we need the assumption.

Theorem B

T: a finite tree Then there exists a finite tree T ′ satisfying the following.

- (1) $G(T) \hookrightarrow G(T')$.
- (2) deg_{max} $(T') \leq 3$ *.*
- (3) $|T'| \leq 2|T| 4$.

Remark: (3) is best possible.

The table of contents

I. Introduction –embeddings between RAAGs– (finished) II. Proofs of main results (finished)

III. Embeddings of RAAGs into mapping class groups

The mapping class groups of surfaces

 $\Sigma_{g,n}$: the orientable compact surface of genus *g* with *n* punctures We assume $\chi(\Sigma_{g,n}) < 0$.

The mapping class group of Σ*g,ⁿ* is defined as follows.

$$
\mathcal{M}(\Sigma_{g,n}):=\pi_0(\textit{Homeo}^+(\Sigma_{g,n}))
$$

α: an essential simple loop on Σ*g,ⁿ*

The complement graph of the curve graph of $\Sigma_{g,n}$

The complement graph of the curve graph $C^c(\Sigma_{g,n})$ is a graph such that

- \bullet *V*($C^{c}(\Sigma_{g,n})$) = {isotopy classes of esls on $\Sigma_{g,n}$ }
- *•* esls *α, β* span an edge iff *α, β* CANNOT be realized disjointly.

Theorem A(1) implies Theorem C

Theorem A(1)

Λ*: a linear forest* Γ*: a finite graph If* $G(\Lambda) \hookrightarrow G(\Gamma)$ *, then* $\Lambda \leq \Gamma$ *.*

Theorem C

Λ*: a linear forest If* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$, then $\Lambda \leq C^c(\Sigma_{g,n})$.

The embedding theorem due to Koberda

Theorem (Koberda, 2012)

Λ*: a finite graph Then the following hold.*

(1) If $\Lambda \leq C^c(\Sigma_{g,n})$ *,* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$ *.*

Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems 31 / 47

(2) There exists a compact surface Σ *such that* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma)$ *.*

The following lemma follows from Koberda's embedding theorem.

Lemma (Koberda)

Λ*: a finite graph If* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$, then there exists a finite full subgraph $\Gamma \leq C^c(\Sigma_{g,n})$ *such that* $G(\Lambda) \hookrightarrow G(\Gamma)$ *.*

Lemma (Koberda)

Λ*: a finite graph If* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$, then there exists a finite full subgraph $\Gamma \leq C^c(\Sigma_{g,n})$ *such that* $G(\Lambda) \hookrightarrow G(\Gamma)$ *.*

Theorem C

Λ*: a linear forest If* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$, then $\Lambda \leq C^c(\Sigma_{g,n})$.

Proof.

Λ: a linear forest Suppose $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$. \exists Γ \leq C^c ($\sum_{g,n}$): a finite full subgraph; $G(Λ)$ \hookrightarrow $G(Γ)$. Theorem A(1) now implies Λ *≤* Γ(*≤ C^c* (Σ*g,n*)), as desired.

 \Box

Theorem ([Koberda, 2012] + Thm C)

Λ*: a linear forest Then* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$ *if and only if* $\Lambda \leq C^c(\Sigma_{g,n})$ *.*

We can regard the above theorem as a generalization of the following classical result.

Theorem (Birman-Lubotzky-McCarthy, 1983)

The maximum rank of free abelian subgroup of M(Σ*g,n*) *is bounded by the number of simple closed curves needed in the pants-decomposition of* $\Sigma_{g,n}$ (= 3*g* + *n* − 3 =: ξ).

Theorem (BLM)

The maximum rank of free abelian subgroup of M(Σ*g,n*) *is bounded by the number of simple closed curves needed in the pants-decomposition of* $\Sigma_{g,n}$ *.*

In our terminology, Birman-Lubotzky-McCarthy's obstruction can be translated as follows.

Theorem (BLM in our terminology)

Λ*: the disjoint union of finitely many copies of P*¹ *Then* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$ *if and only if* $\Lambda \leq C^c(\Sigma_{g,n})$ *.*

If Λ is the disjoint union of finitely many copies of *P*1, then $G(\Lambda) \cong \mathbb{Z}^{|\Lambda|}$.

Moreover, $\Lambda \leq C^c(\Sigma_{g,n})$ means disjointly represented simple closed curves on $\Sigma_{g,n}$.

Theorem ([Koberda, 2012] + Thm C)

Λ*: a linear forest Then* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$ *if and only if* $\Lambda \leq C^c(\Sigma_{g,n})$ *.*

Hence, our obstruction theorem generalizes Birman-Lubotzky-McCarty's.

Theorem (BLM in our terminology) Λ*: the disjoint union of finitely many copies of P*¹

Then $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$ *if and only if* $\Lambda \leq C^c(\Sigma_{g,n})$ *.*

Linear chains on surfaces

 $\mathcal{L}_m = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$: a set of esls on $\mathcal{L}_{\mathcal{g},n}$ $L_m \subset \Sigma_{g,n}$ is said to be a linear chain

- *def ⇔ • αⁱ* and *αi*+1 cannot be realized disjointly.
	- α_i and α_j $(i + 2 \leq j)$ can be realized disjointly.

$$
L(\Sigma_{g,n}) := \max\{m \mid L_m \subset \Sigma_{g,n}: \text{ a linear chain}\}
$$

= $\max\{m \mid P_m \leq C^c(\Sigma_{g,n})\}$
= $\max\{m \mid G(P_m) \hookrightarrow \mathcal{M}(\Sigma_{g,n})\}$

L(Σ _{*g*},*n*)) = ???

KOKK@KKEKKEK E 1990 Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems

Proposition

If g = 0*, we have the following.*

$$
L(\Sigma_{0,n})=\begin{cases}2 & n=4\\n-1 & n\geq 5\end{cases}
$$

• $L(\Sigma_{0,4})$) = 2.

$$
\begin{array}{ccc} \hline \textcircled{3} & \bullet \\ \hline \textcircled{4} & \bullet \end{array}
$$

This picture shows $L(\Sigma_{0,4}) \geq 2$. To see $L(\Sigma_{0,4})) = 2$, suppose to the contrary that $L(\Sigma_{0,4})) \geq 3$. Then there exists a linear chain $L_3 = {\alpha_1, \alpha_2, \alpha_3} \subset \Sigma_{0,4}$. We may assume that α_3 and α_1 is disjointly represented. Then α_3 divide $\Sigma_{0,4}$ into two surfaces, $\Sigma_{0,3}$ and $\Sigma_{0,2}$, not containing an esl, though α_1 must be contained in either $\Sigma_{0,3}$ or $\Sigma_{0,2}$. \equiv 990 Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems 37 / 47

• $L(\Sigma_{0,5})$ = 4.

For $L(\Sigma_{0,n}) \geq 4$, see the picture below.

Suppose to the contrary that $L(\Sigma_{0,n}) \geq 5$. Then there exists a linear chain of length 5, $L_5 = {\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5}$, on $\Sigma_{0,5}$.

We may assume that α_5 and $\alpha_1 \cup \alpha_2 \cup \alpha_3$ are disjointly represented. Since α_5 is a separating curve, α_5 divide $\Sigma_{0,5}$ into $\Sigma_{0,4}$ and $\Sigma_{0,2}$. Hence, the linear chain $L_3 := {\alpha_1, \alpha_2, \alpha_3}$ is contained in either $\Sigma_{0,4}$. However, this is impossible.

By an inductive argument, we yield:

Proposition

If g = 0*, we have the following.*

$$
L(\Sigma_{0,n})=\begin{cases}2 & n=4\\ n-1 & n\geq 5\end{cases}
$$

Since $L(\Sigma_{0,6}) = 5$, $G(P_6)$ cannot be embedded into $\mathcal{M}(\Sigma_{0,6})$.

Further studies $(1/4)$

Question

$$
L(\Sigma_{g,n})=\max\{m\,|G(P_m)\hookrightarrow \mathcal{M}(\Sigma_{g,n})\}=???
$$

If either genus *g* or the number of punctures *n* is equal to 0,

$$
L(\Sigma_{0,n}) = n - 1 \ (n \geq 5)
$$

$$
L(\Sigma_{g,0}) = 2g + 1 \ (g \geq 2).
$$

In general,

$$
L(\Sigma_{g,n})=-\chi(\Sigma_{g,n})
$$
?

More precisely,

$$
|L(\Sigma_{g,n})-|\chi(\Sigma_{g,n})|| \leq 3?
$$

Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems 40 / 47

K □ K K 레 K K B K K B K H X A G W K O W C

Further studies (2/4)

Theorem (Kim-Koberda, 2014)

- *(1)* Λ*: a finite graph If* $\xi(\Sigma_{g,n}) < 3$, then $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$ *if and only if* $Λ \leq C^c(\Sigma_{g,n}).$
- *(2) If ξ*(Σ*g,n*) *>* 3*, then there exist a finite graph* Λ *such that* $G(\Lambda) \hookrightarrow \mathcal{M}(\Sigma_{g,n})$ *but* $\Lambda \not\leq C^c(\Sigma_{g,n})$ *.*

Kim-Koberda said, "we do not know how to resolve the case $\xi = 3$ ". Since $L(\Sigma_{0,6}) = 5$, $G(P_6)$ cannot be embedded into $M(\Sigma_{0,6})$. (I think) studying unembeddability is valid to resolve the case $\xi = 3...$

Further studies (3/4)

Cn: the cyclic graph on *n* vertices Theorem A(1) directly implies that, for any finite graph Γ, if $G(C_5) \hookrightarrow G(\Gamma)$, then $P_4 \leq \Gamma$.

Conjecture (Casals-Ruiz)

Γ*: a finite graph Then G*(Γ) *contains the fund group of a closed hyp surface if and only if* $G(\Gamma)$ *contains* $G(C_n^c)$ *for some* $n \geq 5$ *.*

Note: $C_5^c = C_5$.

Theorem (Servatius-Droms-Servatius)

For any n \geq 5, $G(C_{n}^{c})$ contains the fund group of a closed hyp *surface.*

Conjecture (Casals-Ruiz)

Takuya Katayama (Hiroshima Univ.) Two Embedding Theoren

Γ*: a finite graph Then G*(Γ) *contains the fund group of a closed hyp surface if and only if* $G(\Gamma)$ *contains* $G(C_n^c)$ *for some* $n \geq 5$ *.*

At this time, we have no counter-example of the "only if" part. However, for example, which RAAG contains $G(C_5)$? $G(C_5) \hookrightarrow G(P_8)$ (Casals-Ruiz) and $\neg(G(C_5) \hookrightarrow G(P_4))$ (Droms). A concrete problem: we do not know whether $G(C_5)$ embeds into *G*(P_n) for 5 $\leq \forall n \leq 7$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q @

Further studies (4/4)

Theorem ([Kim-Koberda, 2015] + Thm B)

Λ*: a finite graph Then there exists a finite tree T such that* $G(\Lambda) \hookrightarrow G(T)$ *and* $\deg_{\max}(T') \leq 3$ *.*

Question (Lee, 2016)

For any finite graph Λ , is it possible that $G(\Lambda) \hookrightarrow G(P_n)$ for some *n*?

(I think) it's only a matter of time...

Theorem (Casals-Ruiz, 2015)

For a forest Λ *and a finite graph* Γ *, if* $G(\Lambda) \hookrightarrow G(\Gamma)$ *, then* $\Lambda \leq \overline{\Gamma^e}$ *.*

References

• I. Agol, 'The virtual Haken conjecture', *Doc. Math.* 18 (2013) 1045–1087.

• J. Birman, A. Lubotzky and J. McCarthy, 'Abelian and solvable subgroups of the mapping class groups', *Duke Math. J.* 50 (1983) 1107–1120.

• M. Casals-Ruiz, 'Embeddability and universal equivalence of partially commutative groups', *Int. Math. Res. Not.* (2015) 13575–13622.

• J. Crisp, M. Sageev and M. Sapir, 'Surface subgroups of right-angled Artin groups', *Internat. J. Algebra Comput.* 18 (2008) 443–491.

• S. Kim and T. Koberda, 'Embedability between right-angled Artin groups', *Geom. Topol.* 17 (2013) 493–530.

• S. Kim and T. Koberda, 'Anti-trees and right-angled Artin subgroups of braid groups', *Geom. Topol.* 19 (2015) 3289–3306.

• S. Kim and T. Koberda, 'An obstruction to embedding right-angled Artin groups in mapping class groups', *Int. Math. Res. Not.* 2014 (2014) 3912–3918.

• T. Koberda, 'Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups', *Geom. Funct. Anal.* 22 (2012) 1541–1590.

• S. Lee, Talk at the conference 'The 11th East Asian School of Knots and Related Topics', January 28 (2016).

• H. Servatius, 'Automorphisms of graph groups', *J. Algebra* 126 (1989), 34–60.

• D. Wise, 'The structure of groups with a quasiconvex hierarchy', preprint (2011) available at

http://www.math.mcgill.ca/wise/papers.html.

This talk is based on:

• T. Katayama, 'An obstruction to the existence of embeddings between RAAGs', in preparation. It's almost complete...

Thank you very much for your attention!