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Right-angled Artin groups

Γ: a finite (simplicial) graph
V (Γ) = {v1, v2, · · · , vn}: the vertex set of Γ
E (Γ): the edge set of Γ

Definition
The right-angled Artin group (RAAG) on Γ is the group given by the
following presentation:

G (Γ) = ⟨ v1, v2, . . . , vn | [vi , vj ] = 1 if {vi , vj} ̸∈ E (Γ) ⟩.

G (Γ1) ∼= G (Γ2) if and only if Γ1 ∼= Γ2.

Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems 4 / 47



Pn: the path graph consisting of n vertices Pn

Example

G (P1) ∼= Z
G (P1 ⊔ P1 ⊔ P1) ∼= Z3

G (P1 ⊔ P2) ∼= Z× F2

G ( ) ∼= Z2 ∗ Z
G ( ) ∼= F3

Note: G (Γ) = ⟨ v1, v2, . . . , vn | [vi , vj ] = 1 if {vi , vj} ̸∈ E (Γ) ⟩
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Motivation and main results

Problem (Crisp-Sageev-Sapir, 2008)

For given two finite graphs Λ and Γ, decide whether G (Λ) can be
embedded into G (Γ).

The following is standard.

Proposition
Λ, Γ: finite graphs
If Λ ≤ Γ, then G (Λ) ↪→ G (Γ).
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Proposition
Λ, Γ: finite graphs
If Λ ≤ Γ, then G (Λ) ↪→ G (Γ).

A subgraph Λ of a graph Γ is said to be full if E (Λ) contains every
e ∈ E (Γ) whose end points both lie in V (Λ).
We denote by Λ ≤ Γ if Λ is a full subgraph of Γ.
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Proposition
Λ, Γ: finite graphs
If Λ ≤ Γ, then G (Λ) ↪→ G (Γ).

In general, the converse implication “G (Λ) ↪→ G (Γ)” ⇒ “Λ ≤ Γ” is
false.

Example

G ( ) ∼= F3 ↪→ F2
∼= G (P2).

So the following question naturally arises.

Question
Which finite graph Λ satisfies the following property (∗)?
(∗) For any finite graph Γ, “G (Λ) ↪→ G (Γ)” ⇒ “Λ ≤ Γ”.
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Question
Which finite graph Λ satisfies the following property (∗)?
(∗) For any finite graph Γ, “G (Λ) ↪→ G (Γ)” ⇒ “Λ ≤ Γ”.

The following gives a complete answer to the above question.
A finite graph Λ is said to be a linear forest if each connected
component of Λ is a path graph.

Theorem A (K.)

Let Λ be a finite graph.

(1) If Λ is a linear forest, then Λ has property (∗),
i.e., ∀Γ, if G (Λ) ↪→ G (Γ), then Λ ≤ Γ.

(2) If Λ is not a linear forest, then Λ does not have property (∗),
i.e., ∃Γ such that G (Λ) ↪→ G (Γ), though Λ ̸≤ Γ.
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Theorem A (K.)

Let Λ be a finite graph.

(1) If Λ is a linear forest, then
∀Γ, the relation G (Λ) ↪→ G (Γ) implies the relation Λ ≤ Γ.

(2) If Λ is not a linear forest, then
∃Γ such that G (Λ) ↪→ G (Γ), though Λ ̸≤ Γ.

Application of Thm A(1) to concrete embedding problems

• ¬(Z2 ∗ Z ↪→ F2 × F2 × · · · × F2).
Proof) Suppose to the contrary that Z2 ∗ Z ↪→ F2 × F2 × · · · × F2.
Then since P3 is a linear forest, Theorem A(1) implies
P3 ≤ P2 ⊔ P2 ⊔ · · · ⊔ P2, a contradiction. Q.E.D.
Note: G (P3) ∼= Z2 ∗ Z and
G (P2 ⊔ P2 ⊔ · · · ⊔ P2) ∼= F2 × F2 × · · · × F2.

Similarly, we have ¬(F2 × F2 × · · · × F2 ↪→ Z2 ∗ Z).
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Appl of Thm A(1) (cont’d).

• ¬(G (Λ1) ↪→ G (Λ2)).
Proof) Suppose to the contrary that G (Λ1) ↪→ G (Λ2).
Then since P1 ⊔ P4 ≤ Λ1, we have G (P1 ⊔ P4) ↪→ G (Λ1).
Hence, G (P1 ⊔ P4) ↪→ G (Λ2).
This together with Theorem A(1) implies P1 ⊔ P4 ≤ Λ2, which is
impossible. Q.E.D.

So Theorem A(1) is sometimes valid to decide whether the RAAG, on
a graph which is not a linear forest, embeds into another RAAG.
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Appl of Thm A(1) (cont’d).

• ¬(G (Λ2) ↪→ G (Λ1)).
Proof) Use
a) P1 ⊔ P1 ⊔ P1 ⊔ P1 ≤ Λ2,
i.e., G (P1 ⊔ P1 ⊔ P1 ⊔ P1) ↪→ G (Λ2) and
b) P1 ⊔ P1 ⊔ P1 ⊔ P1 ̸≤ Λ1,
i.e., G (P1 ⊔ P1 ⊔ P1 ⊔ P1) cannot be embedded into G (Λ1). Q.E.D.

Thus we obtain ¬(G (Λ1) ↪→ G (Λ2)) and ¬(G (Λ2) ↪→ G (Λ1)).
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Theorem A(1)

Let Λ be a finite graph.
If Λ is a linear forest, then
∀Γ, the relation G (Λ) ↪→ G (Γ) implies the relation Λ ≤ Γ.

For some special linear forests, Theorem A(1) is known.

• Λ = P1 ⊔ P1 ⊔ · · · ⊔ P1 [Servatius, 1989]

• Λ = P3, P4, P2 ⊔ P2 [Kim-Koberda, 2013]
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Theorem A(2)

Let Λ be a finite graph.
If Λ is not a linear forest, then
∃Γ such that G (Λ) ↪→ G (Γ), though Λ ̸≤ Γ.

Theorem A(2) is known in the case Λ contains a cycle.

Theorem (Kim-Koberda, 2015)

Λ: a finite graph
Then there exists a finite tree T such that G (Λ) ↪→ G (T ).

Hence, we have only to prove Theorem A(2) in the following case.
• Case: Λ is a forest containing a vertex of deg ≥ 3.
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• Case: Λ is a forest containing a vertex of deg ≥ 3.

Today, instead of the proof of Theorem A(2) itself, I explain the
proof of the following partial result of Theorem A(2).

Theorem B (K.)

T: a finite tree
Then there exists a finite tree T ′ satisfying the following.

(1) G (T ) ↪→ G (T ′).

(2) degmax(T
′) ≤ 3, where

degmax(T
′) = max{m |m = deg(v), v ∈ V (T ′)}.

(3) |T ′| ≤ 2|T | − 4.

Note that if degmax(T ) > 3, then we have T ̸≤ T ′.
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By combining Kim-Koberda’s embedding theorem and Theorem B,
we have the following.

Theorem ([Kim-Koberda, 2015] + Thm B)

Λ: a finite graph
Then there exists a finite tree T such that G (Λ) ↪→ G (T ) and
degmax(T

′) ≤ 3.

[Wise, 2011],[Agol, 2014], [Kim-Koberda, 2015] + Thm B

Corollary
M: a complete hyperbolic 3-manifold with finite volume
Then π1(M) is virtually embedded into G (T ) for some finite tree T
with degmax(T ) ≤ 3.
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Main results

Theorem A (K.)

Let Λ be a finite graph.

(1) If Λ is a linear forest, then
∀Γ, the relation G (Λ) ↪→ G (Γ) implies the relation Λ ≤ Γ.

(2) If Λ is not a linear forest, then
∃Γ such that G (Λ) ↪→ G (Γ), though Λ ̸≤ Γ.

Theorem B (K.)

T: a finite tree
Then there exists a finite tree T ′ satisfying the following.

(1) G (T ) ↪→ G (T ′).

(2) degmax(T
′) ≤ 3.

(3) |T ′| ≤ 2|T | − 4.
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Moreover, we obtain the following as a consequence of Theorem A(1).

Theorem C (K.)

Λ: a linear forest
If G (Λ) ↪→ M(Σg ,n), then Λ ≤ Cc(Σg ,n).

This is a partial converse of the following embedding theorem.

Theorem (Koberda, 2012)

Λ: a finite graph
If Λ ≤ Cc(Σg ,n), then G (Λ) ↪→ M(Σg ,n)
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Theorem A(1)

Λ: a linear forest
Γ: a finite graph
If G (Λ) ↪→ G (Γ), then Λ ≤ Γ.

Sketch of proof.

Step 1. Prove Λ ≤ Γe , where Γe is a graph such that

• V (Γe) = {g−1ug ∈ G (Γ) | u ∈ V (Γ), g ∈ G (Γ)}.
• ug and vh span an edge ⇔ ug and vh are not commutative.

Theorem (Casals-Ruiz, 2015)

For a forest Λ and a finite graph Γ, if G (Λ) ↪→ G (Γ), then Λ ≤ Γe .

Step 2. Prove that Λ ≤ Γe implies Λ ≤ Γ.
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Step 2. Prove that Λ ≤ Γe implies Λ ≤ Γ.

Use the “finiteness” of Γe .

Theorem (Kim-Koberda, 2013)

If Λ ≤ Γe , then there exists a sequence of consecutive “co-doubles”

Γ = Γ0 ≤ Γ1 ≤ Γ2 ≤ · · · ≤ Γn ≤ Γe

such that Γi = D(Γi−1) and Λ ≤ Γn.

Here, for a finite graph ∆,

D(∆) := (D(∆c))c .

The operation c : “taking the complement graph”.
The operation D: “taking the double graph along the star subgraph
of a vertex”
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Step 2. Prove that Λ ≤ Γe implies Λ ≤ Γ (cont’d).

Use the “finiteness” of Γe .

Theorem (Kim-Koberda, 2013)

If Λ ≤ Γe , then there exists a sequence of consecutive “co-doubles”

Γ = Γ0 ≤ Γ1 ≤ Γ2 ≤ · · · ≤ Γn ≤ Γe

such that Γi = D(Γi−1) and Λ ≤ Γn.

Proposition (K.)

Λ: a linear forest, ∆: a finite graph
If Λ ≤ D(∆), then Λ ≤ ∆.

Theorem A(1)

Λ: a linear forest, Γ: a finite graph
If G (Λ) ↪→ G (Γ), then Λ ≤ Γ.
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Theorem B
T: a finite tree
Then there exists a finite tree T ′ satisfying the following.

(1) G (T ) ↪→ G (T ′).

(2) degmax(T
′) ≤ 3.

(3) |T ′| ≤ 2|T | − 4.

• Sketch of proof.

T : a finite tree with degmax(T ) > 3.
We would like to find a finite tree T ′ satisfying (1), (2) and (3)...
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Pick a vertex u of deg > 3 in T . By splitting u as follows, we obtain
the new finite tree T̃ .

T
~
T

Note that, for the vertices u and v , we have

deg(u, T̃ ) = deg(u,T )− 1

deg(v , T̃ ) = 3
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T
~
T

Then we can prove T ≤ D(T̃ ), and so G (T ) ↪→ G (D(T̃ )).

Lemma (Kim-Koberda)

For any finite graph Γ, we have G (D(Γ̃)) ↪→ G (Γ).

Thus G (T ) ↪→ G (T̃ ).

Takuya Katayama (Hiroshima Univ.) Two Embedding Theorems 25 / 47



By repeating this argument, we have a finite tree T ′ such that
G (T ) ↪→ G (T ′) and that T ′ consists only of the vertices of deg at
most 3.

Remark
In this argument, we do not need the assumption that T is a tree.
However, to deduce the assertion (3), we need the assumption.

Theorem B
T: a finite tree
Then there exists a finite tree T ′ satisfying the following.

(1) G (T ) ↪→ G (T ′).

(2) degmax(T
′) ≤ 3.

(3) |T ′| ≤ 2|T | − 4.

Remark: (3) is best possible.
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The mapping class groups of surfaces

Σg ,n: the orientable compact surface of genus g with n punctures
We assume χ(Σg ,n) < 0.
The mapping class group of Σg ,n is defined as follows.

M(Σg ,n) := π0(Homeo+(Σg ,n))

α: an essential simple loop on Σg ,n

Tα: the Dehn twist along α

Theorem (Dehn-Lickorish)

Dehn twists on Σg ,n generate M(Σg ,n).
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The complement graph of the curve graph of Σg ,n

The complement graph of the curve graph Cc(Σg ,n) is a graph such
that
• V (Cc(Σg ,n)) = {isotopy classes of esls on Σg ,n}
• esls α, β span an edge iff α, β CANNOT be realized disjointly.
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Theorem A(1) implies Theorem C

Theorem A(1)

Λ: a linear forest
Γ: a finite graph
If G (Λ) ↪→ G (Γ), then Λ ≤ Γ.

Theorem C
Λ: a linear forest
If G (Λ) ↪→ M(Σg ,n), then Λ ≤ Cc(Σg ,n).
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The embedding theorem due to Koberda

Theorem (Koberda, 2012)

Λ: a finite graph
Then the following hold.

(1) If Λ ≤ Cc(Σg ,n), G (Λ) ↪→ M(Σg ,n).

(2) There exists a compact surface Σ such that G (Λ) ↪→ M(Σ).

The following lemma follows from Koberda’s embedding theorem.

Lemma (Koberda)

Λ: a finite graph
If G (Λ) ↪→ M(Σg ,n), then there exists a finite full subgraph
Γ ≤ Cc(Σg ,n) such that G (Λ) ↪→ G (Γ).
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Lemma (Koberda)

Λ: a finite graph
If G (Λ) ↪→ M(Σg ,n), then there exists a finite full subgraph
Γ ≤ Cc(Σg ,n) such that G (Λ) ↪→ G (Γ).

Theorem C
Λ: a linear forest
If G (Λ) ↪→ M(Σg ,n), then Λ ≤ Cc(Σg ,n).

Proof.
Λ: a linear forest
Suppose G (Λ) ↪→ M(Σg ,n).
Then ∃Γ ≤ Cc(Σg ,n): a finite full subgraph; G (Λ) ↪→ G (Γ).
Theorem A(1) now implies Λ ≤ Γ(≤ Cc(Σg ,n)), as desired.
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Theorem ([Koberda, 2012] + Thm C)

Λ: a linear forest
Then G (Λ) ↪→ M(Σg ,n) if and only if Λ ≤ Cc(Σg ,n).

We can regard the above theorem as a generalization of the following
classical result.

Theorem (Birman-Lubotzky-McCarthy, 1983)

The maximum rank of free abelian subgroup of M(Σg ,n) is bounded
by the number of simple closed curves needed in the
pants-decomposition of Σg ,n (= 3g + n − 3 =: ξ).
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Theorem (BLM)

The maximum rank of free abelian subgroup of M(Σg ,n) is bounded
by the number of simple closed curves needed in the
pants-decomposition of Σg ,n.

In our terminology, Birman-Lubotzky-McCarthy’s obstruction can be
translated as follows.

Theorem (BLM in our terminology)

Λ: the disjoint union of finitely many copies of P1

Then G (Λ) ↪→ M(Σg ,n) if and only if Λ ≤ Cc(Σg ,n).

If Λ is the disjoint union of finitely many copies of P1, then
G (Λ) ∼= Z|Λ|.
Moreover, Λ ≤ Cc(Σg ,n) means disjointly represented simple closed
curves on Σg ,n.
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Theorem ([Koberda, 2012] + Thm C)

Λ: a linear forest
Then G (Λ) ↪→ M(Σg ,n) if and only if Λ ≤ Cc(Σg ,n).

Hence, our obstruction theorem generalizes
Birman-Lubotzky-McCarty’s.

Theorem (BLM in our terminology)

Λ: the disjoint union of finitely many copies of P1

Then G (Λ) ↪→ M(Σg ,n) if and only if Λ ≤ Cc(Σg ,n).
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Linear chains on surfaces

Lm = {α1, α2, . . . , αm}: a set of esls on Σg ,n

Lm ⊂ Σg ,n is said to be a linear chain

def⇔ • αi and αi+1 cannot be realized disjointly.

• αi and αj (i + 2 ≤ j) can be realized disjointly.

L(Σg ,n) : = max{m |Lm ⊂ Σg ,n: a linear chain}
= max{m |Pm ≤ Cc(Σg ,n)}
= max{m |G (Pm) ↪→ M(Σg ,n)}

L(Σg ,n)) = ???
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Proposition
If g = 0, we have the following.

L(Σ0,n)) =

{
2 n = 4

n − 1 n ≥ 5

• L(Σ0,4)) = 2.

This picture shows L(Σ0,4)) ≥ 2.
To see L(Σ0,4)) = 2, suppose to the contrary that L(Σ0,4)) ≥ 3.
Then there exists a linear chain L3 = {α1, α2, α3} ⊂ Σ0,4.
We may assume that α3 and α1 is disjointly represented.
Then α3 divide Σ0,4 into two surfaces, Σ0,3 and Σ0,2, not containing
an esl, though α1 must be contained in either Σ0,3 or Σ0,2.
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• L(Σ0,5)) = 4.

For L(Σ0,n)) ≥ 4, see the picture below.

Suppose to the contrary that L(Σ0,n)) ≥ 5.
Then there exists a linear chain of length 5, L5 = {α1, α2, α3, α4, α5},
on Σ0,5.
We may assume that α5 and α1 ∪ α2 ∪ α3 are disjointly represented.
Since α5 is a separating curve, α5 divide Σ0,5 into Σ0,4 and Σ0,2.
Hence, the linear chain L3 := {α1, α2, α3} is contained in either Σ0,4.
However, this is impossible.
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By an inductive argument, we yield:

Proposition
If g = 0, we have the following.

L(Σ0,n) =

{
2 n = 4

n − 1 n ≥ 5

Since L(Σ0,6) = 5, G (P6) cannot be embedded into M(Σ0,6).
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Further studies (1/4)

Question
L(Σg ,n) = max{m |G (Pm) ↪→ M(Σg ,n)} =???

If either genus g or the number of punctures n is equal to 0,

L(Σ0,n) = n − 1 (n ≥ 5)

L(Σg ,0) =
?
2g + 1 (g ≥ 2).

In general,
L(Σg ,n) ≒ −χ(Σg ,n)?

More precisely,
|L(Σg ,n)− |χ(Σg ,n)| | ≤ 3?
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Further studies (2/4)

Theorem (Kim-Koberda, 2014)

(1) Λ: a finite graph
If ξ(Σg ,n) < 3, then G (Λ) ↪→ M(Σg ,n) if and only if
Λ ≤ Cc(Σg ,n).

(2) If ξ(Σg ,n) > 3, then there exist a finite graph Λ such that
G (Λ) ↪→ M(Σg ,n) but Λ ̸≤ Cc(Σg ,n).

Kim-Koberda said, “we do not know how to resolve the case ξ = 3”.
Since L(Σ0,6) = 5, G (P6) cannot be embedded into M(Σ0,6).
(I think) studying unembeddability is valid to resolve the case ξ = 3...
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Further studies (3/4)

Cn: the cyclic graph on n vertices
Theorem A(1) directly implies that, for any finite graph Γ, if
G (C5) ↪→ G (Γ), then P4 ≤ Γ.

Conjecture (Casals-Ruiz)

Γ: a finite graph
Then G (Γ) contains the fund group of a closed hyp surface if and
only if G (Γ) contains G (C c

n ) for some n ≥ 5.

Note: C c
5 = C5.

Theorem (Servatius-Droms-Servatius)

For any n ≥ 5, G (C c
n ) contains the fund group of a closed hyp

surface.
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Conjecture (Casals-Ruiz)

Γ: a finite graph
Then G (Γ) contains the fund group of a closed hyp surface if and
only if G (Γ) contains G (C c

n ) for some n ≥ 5.

At this time, we have no counter-example of the “only if” part.
However, for example, which RAAG contains G (C5)?
G (C5) ↪→ G (P8) (Casals-Ruiz) and ¬(G (C5) ↪→ G (P4)) (Droms).
A concrete problem: we do not know whether G (C5) embeds into
G (Pn) for 5 ≤ ∀n ≤ 7.
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Further studies (4/4)

Theorem ([Kim-Koberda, 2015] + Thm B)

Λ: a finite graph
Then there exists a finite tree T such that G (Λ) ↪→ G (T ) and
degmax(T

′) ≤ 3.

Question (Lee, 2016)

For any finite graph Λ, is it possible that G (Λ) ↪→ G (Pn) for some n?

(I think) it’s only a matter of time...

Theorem (Casals-Ruiz, 2015)

For a forest Λ and a finite graph Γ, if G (Λ) ↪→ G (Γ), then Λ ≤ Γe .
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Thank you very much for your attention!
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