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Kähler and non-Kähler

Definition

A complex mfd (M,J) is said to be Kähler if there
exists a symplectic form ω compatible with J , i.e.,

1 ω(u, Ju) > 0 for any u ̸= 0 ∈ TM ,

2 ω(u, v) = ω(Ju, Jv) for any u, v ∈ TM .

Projective varieties, Calabi-Yau manifolds, and
Stein manifolds are all Kähler.
Hopf manifolds, Calabi-Eckmann manifolds, and
Kodaira-Thurston manifolds are non-Kähler.
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Compact complex surfaces

Compact complex surfaces are classified into seven classes:

(I) CP 2 or ruled surfaces, (II) K3 surfaces, (III) complex tori,

(IV) Kähler elliptic surfaces, (V) alg surfaces of general type,

(VI) non-Kähler elliptic surfaces, (VII) surfaces with b1 = 1.

Theorem (Miyaoka, Siu)

A compact complex surface is Kähler iff its first
Betti number b1 is even.

(I) – (V) are Kähler and (VI), (VII) are non-Kähler.
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Our problem

Problem

Is there any non-Kähler complex structure on R2n?

If n = 1, the answer is clearly “No”.

If n ≥ 3,“Yes” (Calabi-Eckmann 1953).

If n = 2,“Yes” (Di Scala-K-Zuddas 2015).
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Calabi-Eckmann’s construction

H1 : S
2p+1 → CP p, H2 : S

2q+1 → CP q : the Hopf fibrations.
H1 ×H2 : S

2p+1 × S2q+1 → CP p × CP q is a T 2-bundle.
The Calabi-Eckmann manifold Mp,q(τ) is a complex mfd diffeo
to S2p+1 × S2q+1 s.t. H1 ×H2 is a holomorphic torus bundle
(τ is the modulus of a fiber torus).
Ep,q(τ) := (S2p+1\ {p0})× (S2q+1\ {q0}) ⊂ Mp,q(τ).
If p > 0 and q > 0, then it contains holomorphic tori.

So, it is diffeo to R2p+2q+2 and non-Kähler.

This doesn’t work if p = 0 or q = 0.
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Non-Kählerness and holomorphic curves

Lemma (1)

If a complex manifold (R2n, J) contains a compact
holomorphic curve C, then it is non-Kähler.

Proof.

Suppose it is Kähler. Then, there is a symp form ω compatible

with J . Then,
∫
C
ω > 0. Hence, C represents a nontrivial 2nd

homology. This is a contradiction.
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Main Theorem

Let P =
{
0 < ρ1 < 1, 1 < ρ2 < ρ−1

1

}
⊂ R2.

Theorem (D-K-Z, to appear in Geom.Topol.)

For any (ρ1, ρ2) ∈ P , there are a complex manifold E(ρ1, ρ2)

diffeomorphic to R4 and a surjective holomorphic map

f : E(ρ1, ρ2) → CP 1 such that the only singular fiber f−1(0)

is an immersed holomorphic sphere with one node, and the

other fibers are either holomorphic tori or annuli. Moreover,

E(ρ1, ρ2) and E(ρ′1, ρ
′
2) are distinct if (ρ1, ρ2) ̸= (ρ′1, ρ

′
2).
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The Matsumoto-Fukaya fibration

fMF : S4 → CP 1 is a genus-1 achiral Lefschetz fibration

with only two singularities of opposite signs.
F1: the fiber with the positive singularity

(
(z1, z2) 7→ z1z2

)
F2: the fiber with the negative singularity

(
(z1, z2) 7→ z1z̄2

)

S4 = N1∪N2, where Nj is a tubular nbd of Fj,

N1 ∪ (N2\X) ∼= R4 (X is a nbd of − sing),

Topologically, E(ρ1, ρ2) is N1 ∪ (N2\X) and f
is the restriction of fMF .
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The Matsumoto-Fukaya fibration 2

Originally, it is constructed by taking the
composition of the Hopf fibration H : S3 → CP 1

and its suspension ΣH : S4 → S3. fMF = H ◦ ΣH.

The two pinched points correspond to the two
singularities (in the next page).

How to glue ∂N2 to ∂N1 is as the pictures in
the page after next.
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Gluing N1 and N2
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Kirby diagrams

Figure: The Matsumoto-Fukaya fibration on S4.
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Kirby diagrams 2

Figure: The map f on S4\X ∼= R4.
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The Matsumoto-Fukaya fibration
Holomorphic models and analytic gluing

Key Lemma

Let A denote an annulus.

Lemma (2)

Let us glue A×D2 to N1 so that for each t ∈ ∂D2 = S1,

the annulus A× {t} embeds in the fiber torus f−1(t) as a

thickened meridian, and that it rotates in the longitude

direction once as t ∈ S1 rotates once. Then, the resultant

manifold is diffeomorphic to R4.

This topological lemma gives us the“blueprint”.

We will realize this gluing by complex manifolds!
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Holomorphic models

∆(r) := {|z| < r} ⊂ C,
∆(r1, r2) := {r1 < |z| < r2} ⊂ C.
N1 ⇝ W : Kodaira’s holomorphic model,
N2\X ⇝ ∆(1, ρ2)×∆(ρ−1

0 ).
The elliptic fibration

π : C∗ ×∆(0, ρ1)/Z → ∆(0, ρ1),

where n · (z, w) = (zwn, w), extends to a singular
elliptic fibration f1 : W → ∆(ρ1), whose singular
fiber is type I1.
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Gluing domains in the two pieces

The gluing domain in the product part is
V2 := ∆(1, ρ2)×∆(ρ−1

1 , ρ−1
0 ) ⊂ ∆(1, ρ2)×∆(ρ−1

0 ).

The gluing domain V1 ⊂ W is defined as follows.

Put φ(w) = exp
(

1
4πi(logw)

2 − 1
2 logw

)
.

φ(rei(θ+2π)) = reiθφ(reiθ) = wφ(w).

V1 := {[zφ(w), w] | z ∈ ∆(1, ρ2), w ∈ ∆(ρ0, ρ1)} .
Then, V1

∼= ∆(1, ρ2)×∆(ρ0, ρ1).
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Gluing the two pieces

By the biholomorphism between the gluing domains

Φ : V2 → V1; (z, w
−1) 7→ [(zφ(w), w)],

we obtain a complex manifold

E(ρ1, ρ2) :=
(
∆(1, ρ2)×∆(ρ−1

0 )
)
∪Φ W.

∆(ρ1) and ∆(ρ−1
0 ) are glued to become CP 1.

f is defined to be f1 : W → ∆(ρ1) on W , and
the 2nd projection on ∆(1, ρ2)×∆(ρ−1

0 ).
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Classification of holomorphic curves

Lemma (3)

Any compact holomorphic curve in E(ρ1, ρ2) is a
compact fiber of the map f : E(ρ1, ρ2) → CP 1.

Proof.

Let i : C → E(ρ1, ρ2) be a compact holomorphic curve. The

composition f ◦ i : C → CP 1 is a holomorphic map between

compact Riemann surfaces. It is either a brached covering or a

constant map. Since E(ρ1, ρ2) is contractible, f ◦ i is
homotopic to a constant map. So, it is a constant map.
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Properties of E(ρ1, ρ2)

If E(ρ1, ρ2) ∼= E(ρ′1, ρ
′
2), then (ρ1, ρ2) = (ρ′1, ρ

′
2).

Proof.

Let Ψ: E(ρ1, ρ2) → E(ρ′1, ρ
′
2) be a biholomorphism.

Since Ψ sends a compact curve to a compact curve, it is a
fiberwise biholomorphism on W . Looking at the moduli of
elliptic fibers, the base map ∆(ρ1) → ∆(ρ′1) must be an
identity. We obtain ρ1 = ρ′1.

By analyticity, it is fiberwise also on the whole E(ρ1, ρ2).

Since ∆(1, ρ2) ∼= ∆(1, ρ′2), we have ρ2 = ρ′2.

In particular, there are uncountable non-Kähler
complex structures on R4.
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Properties of E(ρ1, ρ2) 2

Any meromorphic function is the pullback of
that on CP 1 by f .

f ∗ : Pic(CP 1) → Pic(E(ρ1, ρ2)) is injective.

E(ρ1, ρ2)× Cn−2 give uncountably many
non-Kähler complex structures on R2n (n ≥ 3).

It cannot be holomorphically embedded in any
compact complex surface.
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Noncompact non-Kähler complex surfaces

Theorem

Any connected open oriented 4-manifold admits
uncountable non-Kähler complex structures.

It is the consequence of a simple application of our
complex R4 and Phillips’ theorem.

Theorem (Phillips)

Let M be an open manifold. Then, the map

d : Sub(M,V ) → Epi(TM, TV ); f 7→ df

is a weak homotopy equivalence.
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Thank you for your attention!
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