Non-Kähler complex structures on \mathbb{R}^4

Naohiko Kasuya j.w.w. Antonio J. Di Scala and Daniele Zuddas

Aoyama Gakuin University

2016.10.25

Naohiko Kasuya j.w.w. Antonio J. Di Scala and Daniele Zuddas Non-Kähler complex structures on \mathbb{R}^4

1 Introduction

- Problem and Motivation
- Main Theorem

2 Construction

- The Matsumoto-Fukaya fibration
- Holomorphic models and analytic gluing

3 Further results

Problem and Motivation Main Theorem

A I A I A I A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Kähler and non-Kähler

Definition

A complex mfd (M, J) is said to be Kähler if there exists a symplectic form ω compatible with J, i.e.,

$$\ \ \, \square \ \ \, \omega(u,Ju)>0 \ \, \text{for any} \ \ u\neq 0\in TM,$$

2
$$\omega(u,v) = \omega(Ju,Jv)$$
 for any $u,v \in TM$.

Projective varieties, Calabi-Yau manifolds, and Stein manifolds are all Kähler. Hopf manifolds, Calabi-Eckmann manifolds, and Kodaira-Thurston manifolds are non-Kähler.

Problem and Motivation Main Theorem

Compact complex surfaces

Compact complex surfaces are classified into seven classes: (I) $\mathbb{C}P^2$ or ruled surfaces, (II) K3 surfaces, (III) complex tori, (IV) Kähler elliptic surfaces, (V) alg surfaces of general type, (VI) non-Kähler elliptic surfaces, (VII) surfaces with $b_1 = 1$.

Theorem (Miyaoka, Siu)

A compact complex surface is Kähler iff its first Betti number b_1 is even.

(I) - (V) are Kähler and (VI), (VII) are non-Kähler.

A B + A B +

Problem and Motivation Main Theorem

< ∃ →

- ∢ ≣ ▶

Our problem

Problem

Is there any non-Kähler complex structure on \mathbb{R}^{2n} ?

Problem and Motivation Main Theorem

Our problem

Problem

Is there any non-Kähler complex structure on \mathbb{R}^{2n} ?

• If n = 1, the answer is clearly "No".

Naohiko Kasuya j.w.w. Antonio J. Di Scala and Daniele Zuddas Non-Kähler complex structures on \mathbb{R}^4

Problem and Motivation Main Theorem

< ∃ →

- ∢ ≣ ▶

Our problem

Problem

Is there any non-Kähler complex structure on \mathbb{R}^{2n} ?

Problem and Motivation Main Theorem

< ∃ →

- ∢ ≣ ▶

Our problem

Problem

Is there any non-Kähler complex structure on \mathbb{R}^{2n} ?

Problem and Motivation Main Theorem

• • = • • = •

Calabi-Eckmann's construction

 $\begin{array}{l} H_1:S^{2p+1}\rightarrow \mathbb{C}P^p,\ H_2:S^{2q+1}\rightarrow \mathbb{C}P^q: \mbox{ the Hopf fibrations.}\\ H_1\times H_2:S^{2p+1}\times S^{2q+1}\rightarrow \mathbb{C}P^p\times \mathbb{C}P^q \mbox{ is a }T^2\mbox{-bundle.}\\ \mbox{The Calabi-Eckmann manifold }M_{p,q}(\tau)\mbox{ is a complex mfd diffeo to }S^{2p+1}\times S^{2q+1}\mbox{ s.t. }H_1\times H_2\mbox{ is a holomorphic torus bundle }(\tau\mbox{ is the modulus of a fiber torus}).\\ E_{p,q}(\tau):=(S^{2p+1}\backslash\{p_0\})\times (S^{2q+1}\backslash\{q_0\})\subset M_{p,q}(\tau).\\ \mbox{ If }p>0\mbox{ and }q>0\mbox{, then it contains holomorphic tori.}\\ \mbox{So, it is diffeo to }\mathbb{R}^{2p+2q+2}\mbox{ and non-K\"ahler.} \end{array}$

Problem and Motivation Main Theorem

Image: A Image: A

Calabi-Eckmann's construction

 $\begin{array}{l} H_1:S^{2p+1}\rightarrow \mathbb{C}P^p,\ H_2:S^{2q+1}\rightarrow \mathbb{C}P^q: \mbox{ the Hopf fibrations.}\\ H_1\times H_2:S^{2p+1}\times S^{2q+1}\rightarrow \mathbb{C}P^p\times \mathbb{C}P^q \mbox{ is a }T^2\mbox{-bundle.}\\ \mbox{The Calabi-Eckmann manifold }M_{p,q}(\tau)\mbox{ is a complex mfd diffeo to }S^{2p+1}\times S^{2q+1}\mbox{ s.t. }H_1\times H_2\mbox{ is a holomorphic torus bundle }(\tau\mbox{ is the modulus of a fiber torus}).\\ E_{p,q}(\tau):=(S^{2p+1}\backslash\{p_0\})\times (S^{2q+1}\backslash\{q_0\})\subset M_{p,q}(\tau).\\ \mbox{ If }p>0\mbox{ and }q>0\mbox{ , then it contains holomorphic tori.}\\ \mbox{So, it is diffeo to }\mathbb{R}^{2p+2q+2}\mbox{ and non-K\"ahler.} \end{array}$

• This doesn't work if p = 0 or q = 0.

Problem and Motivation Main Theorem

Non-Kählerness and holomorphic curves

Lemma (1)

If a complex manifold (\mathbb{R}^{2n}, J) contains a compact holomorphic curve C, then it is non-Kähler.

Proof.

Suppose it is Kähler. Then, there is a symp form ω compatible with J. Then, $\int_C \omega > 0$. Hence, C represents a nontrivial 2nd homology. This is a contradiction.

Problem and Motivation Main Theorem

Main Theorem

Let
$$P = \{0 < \rho_1 < 1, 1 < \rho_2 < \rho_1^{-1}\} \subset \mathbb{R}^2.$$

Theorem (D-K-Z, to appear in Geom.Topol.)

For any $(\rho_1, \rho_2) \in P$, there are a complex manifold $E(\rho_1, \rho_2)$ diffeomorphic to \mathbb{R}^4 and a surjective holomorphic map $f: E(\rho_1, \rho_2) \to \mathbb{C}P^1$ such that the only singular fiber $f^{-1}(0)$ is an immersed holomorphic sphere with one node, and the other fibers are either holomorphic tori or annuli. Moreover, $E(\rho_1, \rho_2)$ and $E(\rho'_1, \rho'_2)$ are distinct if $(\rho_1, \rho_2) \neq (\rho'_1, \rho'_2)$.

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

The Matsumoto-Fukaya fibration

 $f_{MF}: S^4 \to \mathbb{C}P^1$ is a genus-1 achiral Lefschetz fibration with only two singularities of opposite signs. F_1 : the fiber with the positive singularity $((z_1, z_2) \mapsto z_1 z_2)$ F_2 : the fiber with the negative singularity $((z_1, z_2) \mapsto z_1 \overline{z_2})$

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

The Matsumoto-Fukaya fibration

 $f_{MF}: S^4 \to \mathbb{C}P^1$ is a genus-1 achiral Lefschetz fibration with only two singularities of opposite signs. F_1 : the fiber with the positive singularity $((z_1, z_2) \mapsto z_1 z_2)$ F_2 : the fiber with the negative singularity $((z_1, z_2) \mapsto z_1 \overline{z_2})$ $\blacksquare S^4 = N_1 \cup N_2$, where N_i is a tubular nbd of F_i ,

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

The Matsumoto-Fukaya fibration

$$\begin{split} f_{MF}: S^4 &\to \mathbb{C}P^1 \text{ is a genus-1 achiral Lefschetz fibration} \\ \text{with only two singularities of opposite signs.} \\ F_1: \text{ the fiber with the positive singularity } & ((z_1, z_2) \mapsto z_1 z_2) \\ F_2: \text{ the fiber with the negative singularity } & ((z_1, z_2) \mapsto z_1 \overline{z}_2) \\ \bullet S^4 &= N_1 \cup N_2, \text{ where } N_j \text{ is a tubular nbd of } F_j, \\ \bullet N_1 \cup (N_2 \backslash X) \cong \mathbb{R}^4 \text{ (}X \text{ is a nbd of } - \text{sing),} \end{split}$$

• • = • • = •

The Matsumoto-Fukaya fibration

 $f_{MF}: S^4 \to \mathbb{C}P^1$ is a genus-1 achiral Lefschetz fibration with only two singularities of opposite signs. F_1 : the fiber with the positive singularity $((z_1, z_2) \mapsto z_1 z_2)$ F_2 : the fiber with the negative singularity $((z_1, z_2) \mapsto z_1 \overline{z}_2)$ • $S^4 = N_1 \cup N_2$, where N_i is a tubular nbd of F_i , • $N_1 \cup (N_2 \setminus X) \cong \mathbb{R}^4$ (X is a nbd of - sing), • Topologically, $E(\rho_1, \rho_2)$ is $N_1 \cup (N_2 \setminus X)$ and f is the restriction of f_{MF} .

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

The Matsumoto-Fukaya fibration 2

Originally, it is constructed by taking the composition of the Hopf fibration $H: S^3 \to \mathbb{C}P^1$ and its suspension $\Sigma H: S^4 \to S^3$. $f_{MF} = H \circ \Sigma H$.

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

The Matsumoto-Fukaya fibration 2

Originally, it is constructed by taking the composition of the Hopf fibration $H: S^3 \to \mathbb{C}P^1$ and its suspension $\Sigma H: S^4 \to S^3$. $f_{MF} = H \circ \Sigma H$.

The two pinched points correspond to the two singularities (in the next page).

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

A B > A B >

The Matsumoto-Fukaya fibration 2

Originally, it is constructed by taking the composition of the Hopf fibration $H: S^3 \to \mathbb{C}P^1$ and its suspension $\Sigma H: S^4 \to S^3$. $f_{MF} = H \circ \Sigma H$.

- The two pinched points correspond to the two singularities (in the next page).
- How to glue ∂N₂ to ∂N₁ is as the pictures in the page after next.

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

The Matsumoto-Fukaya fibration 3

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

Gluing N_1 and N_2

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

- ∢ ≣ ▶

- A 🗐 🕨

Kirby diagrams

Figure: The Matsumoto-Fukaya fibration on S^4 .

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

・ 同 ト ・ ヨ ト ・ ヨ ト

Kirby diagrams 2

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

Key Lemma

Let A denote an annulus.

Lemma (2)

Let us glue $A \times D^2$ to N_1 so that for each $t \in \partial D^2 = S^1$, the annulus $A \times \{t\}$ embeds in the fiber torus $f^{-1}(t)$ as a thickened meridian, and that it rotates in the longitude direction once as $t \in S^1$ rotates once. Then, the resultant manifold is diffeomorphic to \mathbb{R}^4 .

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

Key Lemma

Let A denote an annulus.

Lemma (2)

Let us glue $A \times D^2$ to N_1 so that for each $t \in \partial D^2 = S^1$, the annulus $A \times \{t\}$ embeds in the fiber torus $f^{-1}(t)$ as a thickened meridian, and that it rotates in the longitude direction once as $t \in S^1$ rotates once. Then, the resultant manifold is diffeomorphic to \mathbb{R}^4 .

This topological lemma gives us the "blueprint".

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

Key Lemma

Let A denote an annulus.

Lemma (2)

Let us glue $A \times D^2$ to N_1 so that for each $t \in \partial D^2 = S^1$, the annulus $A \times \{t\}$ embeds in the fiber torus $f^{-1}(t)$ as a thickened meridian, and that it rotates in the longitude direction once as $t \in S^1$ rotates once. Then, the resultant manifold is diffeomorphic to \mathbb{R}^4 .

This topological lemma gives us the "blueprint".

We will realize this gluing by complex manifolds!

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

Holomorphic models

$$\begin{array}{l} \Delta(r) := \{ |z| < r \} \subset \mathbb{C}, \\ \Delta(r_1, r_2) := \{ r_1 < |z| < r_2 \} \subset \mathbb{C}. \\ N_1 \rightsquigarrow W : \text{ Kodaira's holomorphic model,} \\ N_2 \backslash X \rightsquigarrow \Delta(1, \rho_2) \times \Delta(\rho_0^{-1}). \end{array}$$

The elliptic fibration

$$\pi: \mathbb{C}^* \times \Delta(0, \rho_1) / \mathbb{Z} \to \Delta(0, \rho_1),$$

where $n \cdot (z, w) = (zw^n, w)$, extends to a singular elliptic fibration $f_1 : W \to \Delta(\rho_1)$, whose singular fiber is type I₁.

A B + A B +

Gluing domains in the two pieces

The gluing domain in the product part is $V_2 := \Delta(1, \rho_2) \times \Delta(\rho_1^{-1}, \rho_0^{-1}) \subset \Delta(1, \rho_2) \times \Delta(\rho_0^{-1}).$

The gluing domain $V_1 \subset W$ is defined as follows. Put $\varphi(w) = \exp\left(\frac{1}{4\pi i}(\log w)^2 - \frac{1}{2}\log w\right)$.

$$V_1 := \{ [z\varphi(w), w] \mid z \in \Delta(1, \rho_2), w \in \Delta(\rho_0, \rho_1) \}.$$

Then, $V_1 \cong \Delta(1, \rho_2) \times \Delta(\rho_0, \rho_1).$

白マ イヨマ イヨマ

Gluing domains in the two pieces

The gluing domain in the product part is $V_2 := \Delta(1, \rho_2) \times \Delta(\rho_1^{-1}, \rho_0^{-1}) \subset \Delta(1, \rho_2) \times \Delta(\rho_0^{-1}).$

The gluing domain $V_1 \subset W$ is defined as follows. Put $\varphi(w) = \exp\left(\frac{1}{4\pi i}(\log w)^2 - \frac{1}{2}\log w\right)$. • $\varphi(re^{i(\theta+2\pi)}) = re^{i\theta}\varphi(re^{i\theta}) = w\varphi(w)$. $V_1 := \{[z\varphi(w), w] \mid z \in \Delta(1, \rho_2), w \in \Delta(\rho_0, \rho_1)\}$. Then, $V_1 \cong \Delta(1, \rho_2) \times \Delta(\rho_0, \rho_1)$.

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

Gluing domains in the two pieces 2

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

▶ ★ 厘 ▶ ★ 厘 ▶ ...

Gluing the two pieces

By the biholomorphism between the gluing domains $\Phi:V_2\to V_1;\ (z,w^{-1})\mapsto [(z\varphi(w),w)],$ we obtain a complex manifold

$$E(\rho_1,\rho_2) := \left(\Delta(1,\rho_2) \times \Delta(\rho_0^{-1})\right) \cup_{\Phi} W.$$

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

Gluing the two pieces

By the biholomorphism between the gluing domains $\Phi:V_2\to V_1;\ (z,w^{-1})\mapsto [(z\varphi(w),w)],$ we obtain a complex manifold

$$E(\rho_1,\rho_2) := \left(\Delta(1,\rho_2) \times \Delta(\rho_0^{-1})\right) \cup_{\Phi} W.$$

• $\Delta(\rho_1)$ and $\Delta(\rho_0^{-1})$ are glued to become $\mathbb{C}P^1$.

The Matsumoto-Fukaya fibration Holomorphic models and analytic gluing

高 と く ヨ と く ヨ と

Gluing the two pieces

By the biholomorphism between the gluing domains $\Phi:V_2\to V_1;\ (z,w^{-1})\mapsto [(z\varphi(w),w)],$ we obtain a complex manifold

$$E(\rho_1,\rho_2) := \left(\Delta(1,\rho_2) \times \Delta(\rho_0^{-1})\right) \cup_{\Phi} W.$$

Δ(ρ₁) and Δ(ρ₀⁻¹) are glued to become CP¹.
 f is defined to be f₁ : W → Δ(ρ₁) on W, and the 2nd projection on Δ(1, ρ₂) × Δ(ρ₀⁻¹).

Classification of holomorphic curves

Lemma (3)

Any compact holomorphic curve in $E(\rho_1, \rho_2)$ is a compact fiber of the map $f : E(\rho_1, \rho_2) \to \mathbb{C}P^1$.

Proof.

Let $i: C \to E(\rho_1, \rho_2)$ be a compact holomorphic curve. The composition $f \circ i: C \to \mathbb{C}P^1$ is a holomorphic map between compact Riemann surfaces. It is either a brached covering or a constant map. Since $E(\rho_1, \rho_2)$ is contractible, $f \circ i$ is homotopic to a constant map. So, it is a constant map.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Properties of $E(\rho_1, \rho_2)$

If
$$E(\rho_1, \rho_2) \cong E(\rho'_1, \rho'_2)$$
, then $(\rho_1, \rho_2) = (\rho'_1, \rho'_2)$.

Proof.

Let $\Psi \colon E(\rho_1, \rho_2) \to E(\rho_1', \rho_2')$ be a biholomorphism. Since Ψ sends a compact curve to a compact curve, it is a fiberwise biholomorphism on W. Looking at the moduli of elliptic fibers, the base map $\Delta(\rho_1) \to \Delta(\rho_1')$ must be an identity. We obtain $\rho_1 = \rho_1'$.

By analyticity, it is fiberwise also on the whole $E(\rho_1, \rho_2)$. Since $\Delta(1, \rho_2) \cong \Delta(1, \rho'_2)$, we have $\rho_2 = \rho'_2$.

In particular, there are uncountable non-Kähler complex structures on \mathbb{R}^4 .

Properties of $E(\rho_1, \rho_2)$ 2

Naohiko Kasuya j.w.w. Antonio J. Di Scala and Daniele Zuddas Non-Kähler complex structures on \mathbb{R}^4

э

▶ ★ 문 ▶ ★ 문 ▶

Properties of $E(\rho_1, \rho_2)$ 2

■ Any meromorphic function is the pullback of that on CP¹ by f.

Properties of $E(\rho_1, \rho_2)$ 2

- Any meromorphic function is the pullback of that on CP¹ by f.
- $f^* : \operatorname{Pic}(\mathbb{C}P^1) \to \operatorname{Pic}(E(\rho_1, \rho_2))$ is injective.

Properties of $E(\rho_1, \rho_2)$ 2

- Any meromorphic function is the pullback of that on CP¹ by f.
- $f^* : \operatorname{Pic}(\mathbb{C}P^1) \to \operatorname{Pic}(E(\rho_1, \rho_2))$ is injective.
- E(ρ₁, ρ₂) × C^{n−2} give uncountably many non-Kähler complex structures on R²ⁿ (n ≥ 3).

Properties of $E(\rho_1, \rho_2)$ 2

- Any meromorphic function is the pullback of that on CP¹ by f.
- $f^* : \operatorname{Pic}(\mathbb{C}P^1) \to \operatorname{Pic}(E(\rho_1, \rho_2))$ is injective.
- $E(\rho_1, \rho_2) \times \mathbb{C}^{n-2}$ give uncountably many non-Kähler complex structures on \mathbb{R}^{2n} $(n \ge 3)$.
- It cannot be holomorphically embedded in any compact complex surface.

Noncompact non-Kähler complex surfaces

Theorem

Any connected open oriented 4-manifold admits uncountable non-Kähler complex structures.

It is the consequence of a simple application of our complex \mathbb{R}^4 and Phillips' theorem.

Theorem (Phillips)

Let M be an open manifold. Then, the map $d: \operatorname{Sub}(M, V) \to \operatorname{Epi}(TM, TV); f \mapsto df$ is a weak homotopy equivalence.

Thank you for your attention!

< E.

Naohiko Kasuya j.w.w. Antonio J. Di Scala and Daniele Zuddas Non-Kähler complex structures on \mathbb{R}^4