Divisibility of Lee's class and its relation with Rasmussen's invariant

Taketo Sano

The University of Tokyo

2019-06-07 Topology and Geometry of Low-dimensional Manifolds

https://arxiv.org/abs/1812.10258

Contents

- 1. Introduction
- 2. Preliminary : Khovanov homology theory
- 3. Generalizing Lee's classes
- 4. $k_c(D)$ and $\bar{s}_c(K)$
- 5. Behavior of $\bar{s}_c(K)$ under cobordisms
- 6. Coincidence with s
- 7. Future prospects

Contents

1. Introduction

- 2. Preliminary : Khovanov homology theory
- 3. Generalizing Lee's classes
- 4. $k_c(D)$ and $\bar{s}_c(K)$
- 5. Behavior of $\bar{s}_c(K)$ under cobordisms
- 6. Coincidence with s
- 7. Future prospects

Introduction : History

- [Kho00] M. Khovanov, "A categorification of the Jones polynomial".
 - Khovanov homology a bigraded link homology theory, constructed combinatorially from a planar link diagram.
 - Its graded Euler characteristic gives the Jones polynomial.
- ► [Lee05] E. S. Lee, "An endomorphism of the Khovanov invariant".
 - Lee homology a variant of Khovanov homology, originally introduced to prove the "Kight move conjecture" for the Q-Khovanov homology of alternating knots.
- [Ras10] J. Rasmussen, "Khovanov homology and the slice genus".
 - s-invariant an integer valued knot invariant obtained from Lee homology.
 - ► *s* gives a combinatorial proof for the Milnor conjecture.

Introduction : Khovanov homology

Khovanov homology H_{Kh} is a bigraded link homology theory, constructed combinatorially from a planar link diagram.

Theorem ([Kho00, Theorem 1])

For any diagram D of an oriented link L, the isomorphism class of $H^{\cdot}_{Kh}(D; R)$ (as a bigraded R-module) is an invariant of L.

Proposition ([Kho00, Proposition 9])

The graded Euler characteristic of $H^{\cdot}_{Kh}(L; \mathbb{Q})$ gives the (unnormalized) Jones polynomial of L:

$$\sum_{i,j} (-1)^i q^j \dim_{\mathbb{Q}} (H^{ij}_{Kh}(L;\mathbb{Q})) = (q+q^{-1}) V(L)|_{\sqrt{t}=-q}.$$

Introduction : Khovanov homology

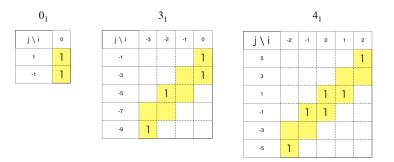
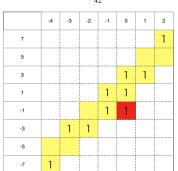


Figure 1: $H_{Kh}(K; \mathbb{Q})$ for $K = 0_1, 3_1, 4_1$

Introduction : Khovanov homology



9₄₂

Figure 2: $H_{Kh}(K; \mathbb{Q})$ for $K = 9_{42}$

Introduction : Lee homology and Lee's classes

Lee homology H_{Lee} is a variant of Khovanov homology. Although the construction is similar, when $R = \mathbb{Q}$ the structure of H_{Lee} is strikingly simple.

For a knot diagram D, there are two distinct classes $[\alpha], [\beta]$ constructed combinatorially from D.

Theorem ([Lee05, Theorem 4.2])

When $R = \mathbb{Q}$, the two classes $[\alpha], [\beta]$ form a basis of $H_{Lee}(D; \mathbb{Q})$.

Remark

For a link diagram D with ℓ components, there are 2^{ℓ} distinct classes $[\alpha(D, o)]$ one for each alternative orientation o of D. These form a basis of $H_{Lee}(D; \mathbb{Q})$.

Introduction : Rasmussen's s-invariant

Rasmussen introduced in [Ras10] an integer-valued knot invariant, called the *s*-invariant, based on \mathbb{Q} -Lee homology.

 H_{Lee} is not bigraded (unlike H_{Kh}), but admits a filtration by q-degree. For a knot K, the s-invariant is defined by

$$s(K) := \frac{q_{\max} + q_{\min}}{2},$$

where q_{\max} (resp. q_{\min}) denotes the maximum (resp. minimum) q-degree of $H_{Lee}(K; \mathbb{Q})$.

Rasmussen showed that $[\alpha], [\beta]$ are invariant (up to unit) under the Reidemeister moves. Hence Rasmussen called them the "canonical generators" of $H_{Lee}(K; \mathbb{Q})$.

This fact is used to prove the important properties of s.

Introduction : Properties of s

Theorem ([Ras10, Theorem 2])

s defines a homomorphism from the knot concordance group in S^3 to $2\mathbb{Z}$:

$$s: Conc(S^3) \rightarrow 2\mathbb{Z}.$$

Theorem ([Ras10, Theorem 1]) *s gives a lower bound of the slice genus:*

 $|s(K)| \leq 2g_*(K).$

Theorem ([Ras10, Theorem 4]) If K is a positive knot, then

$$s(K) = 2g_*(K) = 2g(K).$$

Introduction : Properties of s

With the above three properties of *s*, one obtains:

Corollary (The Milnor Conjecture, [Mil68])

The (smooth) slice genus and the unknotting number of the (p, q) torus knot are both equal to (p-1)(q-1)/2.

Remark

The Milnor Conjecture was first proved by Kronheimer and Mrowka in [KM93] using gauge theory, but Rasmussen's result was notable since it provided a purely combinatorial proof.

Our observations

Now we consider Lee homology over $\mathbb{Z}.$ Let D be a knot diagram, and denote

$$H_{Lee}(D;\mathbb{Z})_f = H_{Lee}(D;\mathbb{Z})/\operatorname{Tor}.$$

The two classes $[\alpha], [\beta]$ can be defined over \mathbb{Z} , but they do not form a basis of $H_{Lee}(D; \mathbb{Z})_f \cong \mathbb{Z}^2$.

We created a computer program¹ that calculates the components of $[\alpha], [\beta]$ with respect to some basis of $H_{Lee}(D; \mathbb{Z})_f$. It turned out, that for any prime knot diagram of crossing number up to 11, only **2-powers** appear in those components.

Question

Where does the 2-powers come from, and what information can we extract from the 2-divisibility of $[\alpha], [\beta]$?

¹https://github.com/taketo1024/SwiftyMath

Computational results

```
3_1
b \otimes a_{(111)} = [2, -2]
a \otimes b(111) = [-2, -2]
4 1
a \otimes b \otimes a ( \otimes 0 \otimes 1 ) = [-2, -2]
5_1
b \otimes a_{(11111)} = [2, -2]
a \otimes b(11111) = [-2, -2]
5_2
b \otimes a \otimes b \otimes a_{(11111)} = [-8, 8]
a \otimes b \otimes a \otimes b_{(11111)} = [-8, -8]
6_1
a \otimes b \otimes a \otimes b \otimes a_{(110011)} = [8, 8]
62
a \otimes b \otimes a_{(110011)} = [2, 2]
b \otimes a \otimes b_{(110011)} = [2, -2]
6_3
a \otimes b \otimes b (0 \otimes 1 1 1 \otimes ) = [-2, 2]
b \otimes a \otimes a (0 \otimes 1 \times 1 \otimes 2) = [2, 2]
```

7 1 $b \otimes a_{(1111111)} = [2, -2]$ a⊗b(1111111) = [-2, -2] 7_2 $b \otimes a \otimes b \otimes a \otimes b \otimes a (1111111) = [-32, 32]$ $a \otimes b \otimes a \otimes b \otimes a \otimes b (11111111) = \lceil 32, 32 \rceil$ 73 $b \otimes a \otimes b \otimes a (0 \otimes 0 \otimes 0 \otimes 0 \otimes 0) = [-1, 1]$ $a \otimes b \otimes a \otimes b (\otimes 0 \otimes 0 \otimes 0 \otimes 0) = [1, 1]$ 7_4 $a \otimes b \otimes a \otimes$ 75 $b \otimes a \otimes b \otimes a_{(1111111)} = [-8, 8]$ $a \otimes b \otimes a \otimes b(1111111) = [-8, -8]$ 7_6 $a \otimes b \otimes b \otimes b (1110011) = [4, -4]$ 77 $a \otimes b \otimes a \otimes a_{(1100100)} = [2, -2]$ $b \otimes a \otimes b \otimes b (1100100) = [-2, -2]$

Figure 3: Computational results²

²https://git.io/fphro

Overview of our results (1/2)

We consider the question in a more generalized setting. There exists a family of Khovanov-type homology theories $\{H_c(-; R)\}_{c \in R}$ over a commutative ring R parameterized by $c \in R$.

For each $c \in R$, Lee's classes $[\alpha], [\beta]$ of a knot diagram D can also be defined in $H_c(D; R)$.

If R is an integral domain and c is non-zero, non-invertible, then we can define the *c*-divisibility of $[\alpha]$ (modulo torsions) by the exponent of its *c*-power factor. We denote it by $k_c(D)$.

By inspecting the variance of k_c under the Reidemeister moves, we prove that

$$\bar{s}_c(K) := 2k_c(D) + w(D) - r(D) + 1$$

is a knot invariant, where w is the writhe, and r is the number of Seifert circles.

Overview of our results (2/2)

Again by computations, we saw that values of $\bar{s}_2(-;\mathbb{Z})$ coincide with values of s for all prime knots of crossing number up to 11.

Question

Are all \bar{s}_c equal to s?

The following theorems support the affirmative answer.

Theorem (S.)

Each \bar{s}_c possesses properties common to s. In particular, the each \bar{s}_c can be used to reprove the Milnor conjecture.

Theorem (S.) If $(R, c) = (\mathbb{Q}[h], h)$, then the knot invariant \bar{s}_h coincides with s

 $s(K) = \bar{s}_h(K; \mathbb{Q}[h]).$

Conventions

In this talk, all knots and links are assumed to be **oriented**. For simplicity, we mainly focus on **knots**, but many of the results can be generalized to links.

Contents

1. Introduction

2. Preliminary : Khovanov homology theory

- 3. Generalizing Lee's classes
- 4. $k_c(D)$ and $\bar{s}_c(K)$
- 5. Behavior of $\bar{s}_c(K)$ under cobordisms
- 6. Coincidence with s
- 7. Future prospects

Frobenius algebra (1/2)

Let *R* be a commutative ring with unity. A **Frobenius algebra** over *R* is a quintuple $(A, m, \iota, \Delta, \varepsilon)$ satisfying:

- 1. (A, m, ι) is an associative *R*-algebra with multiplication $m: A \otimes A \rightarrow A$ and unit $\iota: R \rightarrow A$,
- 2. (A, Δ, ε) is a coassociative *R*-coalgebra with comultiplication $\Delta : A \rightarrow A \otimes A$ and counit $\varepsilon : A \rightarrow R$, and
- 3. the Frobenius relation holds:

$$\Delta \circ m = (id \otimes m) \circ (\Delta \otimes id) = (m \otimes id) \circ (id \otimes \Delta).$$

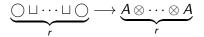
Frobenius algebra (2/2)

A commutative Frobenius algebra A gives a 1+1 TQFT

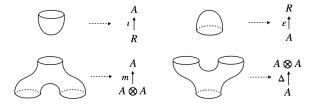
 $\mathcal{F}_A: Cob_2 \longrightarrow Mod_R,$

by mapping:

Objects:

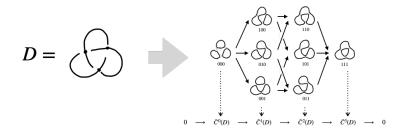


Morphisms:



Construction of the chain complex

Let D be a link diagram with n crossings. The 2^n resolutions of the crossings yields a commutative cubic diagram in Cob_2 .



By applying \mathcal{F}_A we obtain a commutative cubic diagram in Mod_R .

Then we turn this cube skew commutative by appropriately adjusting the signs of the edge maps.

Finally we fold the cube and obtain a chain complex $C_A(D)$ and its homology $H_A(D)$.

Khovanov homology and its variants

Khovanov's original theory is given by $A = R[X]/(X^2)$. Other variant theories are given by:

►
$$A = R[X]/(X^2 - 1)$$
 → Lee's theory
► $A = R[X]/(X^2 - hX)$ → Bar-Natan's theory

Khovanov unified these theories in [Kho06] by considering the following special Frobenius algebra with $h, t \in R$:

$$A_{h,t}=R[X]/(X^2-hX-t).$$

Denote the corresponding chain complex by $C_{h,t}(D; R)$ and its homology by $H_{h,t}(D; R)$. The isomorphism class of $H_{h,t}(D; R)$ is invariant under Reidemeister moves, thus gives a link invariant.

Contents

- 1. Introduction
- 2. Preliminary : Khovanov homology theory
- 3. Generalizing Lee's classes
- 4. $k_c(D)$ and $\bar{s}_c(K)$
- 5. Behavior of $\bar{s}_c(K)$ under cobordisms
- 6. Coincidence with s
- 7. Future prospects

Generalizing Lee's classes (1/2)

In order to generalize Lee's classes $[\alpha], [\beta]$ in $H_{h,t}(D; R)$, we assume (R, h, t) satisfies the following condition:

Condition

 $X^2 - hX - t$ factors into linear polynomials in R[X].

This is equivalent to:

Condition

There exists $c \in R$ such that $h^2 + 4t = c^2$ and $(h \pm c)/2 \in R$.

With this condition, fix one square root $c = \sqrt{h^2 + 4t}$, and let $X^2 - hX - t = (X - u)(X - v)$ with c = v - u. Define

$$\mathbf{a} = X - u, \quad \mathbf{b} = X - v \in A.$$

Generalizing Lee's classes (2/2)

With **a** and **b**, the multiplication and comultiplication on A diagonalizes as:

$$m(\mathbf{a} \otimes \mathbf{a}) = c\mathbf{a}, \qquad \Delta(\mathbf{a}) = \mathbf{a} \otimes \mathbf{a},$$

$$m(\mathbf{a} \otimes \mathbf{b}) = 0, \qquad \Delta(\mathbf{b}) = \mathbf{b} \otimes \mathbf{b}$$

$$m(\mathbf{b} \otimes \mathbf{a}) = 0$$

$$m(\mathbf{b} \otimes \mathbf{b}) = -c\mathbf{b}$$

We define the cycles $\alpha, \beta \in C_{h,t}(D; R)$ by the orientation preserving resolution of D.

Remark

For a link diagram D with ℓ components, there are 2^{ℓ} distinct cycles $\alpha(D, o)$ one for each alternative orientation o of D.

Reduction of parameters

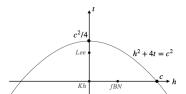
In our setting, we may reduce the parameters (h, t) to a single parameter c.

Proposition

For another (h', t') such that $c = \sqrt{h'^2 + 4t'}$, the corresponding groups $H_{h,t}(D; R)$ and $H_{h',t'}(D; R)$ are naturally isomorphic, and under the isomorphism the Lee classes correspond one-to-one.

Thus we denote the isomorphism class by $H_c(D; R)$ and regard $[\alpha], [\beta] \in H_c(D; R)$.

The figure depicts the (h, t)-parameter space, where each point (h, t) corresponds to $H_{h,t}(D; R)$ and the parabola $h^2 + 4t = c^2$ corresponds to the isomorphism class $H_c(D; R)$.



Generalizing Lee's theorem

The following proposition generalizes Lee's theorem for \mathbb{Q} -Lee homology (\mathbb{Q} -Lee homology corresponds to $(R, c) = (\mathbb{Q}, 2)$).

Proposition

If <u>c</u> is invertible in R, then $\{[\alpha], [\beta]\}$ form a basis of $H_c(D; R)$.

Proof.

A is free over R with basis $\{1, X\}$. Now $\{\mathbf{a}, \mathbf{b}\}$ also form a basis of A, since the transformation matrix $\begin{pmatrix} -u & -v \\ 1 & 1 \end{pmatrix}$ has determinant v - u = c.

By the admissible colorings decomposition of $C_c(D; R)$ (proposed by Wehrli in [Weh08]), one can show that the subcomplex generated by α and β becomes $H_c(D; R)$, whereas the remaining part is acyclic.

Remark

For a link diagram D, the 2^{ℓ} classes $\{[\alpha(D, o)]\}_o$ form a basis of $H_c(D; R)$.

Correspondence under Reidemeister moves (1/2)

Next, the following proposition generalizes the "invariance of $[\alpha]$ and $[\beta]$ (up to unit) in Q-Lee theory".

Proposition

Suppose D, D' are two diagrams related by a single Reidemeister move. Under the corresponding isomorphism:

 $\rho: H_c(D; R) \to H_c(D'; R)$

there exists some $j \in \{0, \pm 1\}$ and $\varepsilon, \varepsilon' \in \{\pm 1\}$ such that the α, β -classes of D and D' are related as:

$$[\alpha'] = \varepsilon c^j \cdot \rho[\alpha],$$

$$[\beta'] = \varepsilon' c^j \cdot \rho[\beta].$$

(Here c is not necessarily invertible, so when j < 0 the equation $z = c^{j}w$ is to be understood as $c^{-j}z = w$.)

Correspondence under Reidemeister moves (2/2)

Proposition (continued)

Moreover the exponent j is given by

$$j = \frac{\Delta r - \Delta w}{2}$$

where r denotes the number of Seifert circles, w denotes the writhe, and the prefixed Δ is the difference of the corresponding numbers for D and D'.

Proof.

The isomorphism ρ is given explicitly, and the proof is done by checking all possible patterns of $[\alpha]$ and those images under ρ .

Note that $[\alpha], [\beta]$ are invariant (up to unit) iff <u>c is invertible</u>.

Remark

Similar statement holds for link diagrams.

Summary

- We defined a family of Khovanov-type link homology theories {H_c(−; R)}_{c∈R}, where Knovanov's theory corresponds to c = 0 and Lee's theory corresponds to c = 2.
- For each c ∈ R, we generalized Lee's classes [α], [β] of a knot diagram D in H_c(D; R).
- [α], [β] form a basis of H_c(D; R) and are invariant (up to unit) under the Reidemeister moves iff <u>c is invertible</u>.

Thus the situation is completely analogous to \mathbb{Q} -Lee theory when c is invertible. Our main concern is when c is not invertible.

Contents

- 1. Introduction
- 2. Preliminary : Khovanov homology theory
- 3. Generalizing Lee's classes
- 4. $k_c(D)$ and $\bar{s}_c(K)$
- 5. Behavior of $\bar{s}_c(K)$ under cobordisms
- 6. Coincidence with s
- 7. Future prospects

c-divisibility of the α -class

Let R be an integral domain, and $c \in R$ be a non-zero non-invertible element in R. Denote

$$H_{c}(D; R)_{f} = H_{c}(D; R) / Tor.$$

By abuse of notation, we denote the images of $[\alpha], [\beta]$ in $H_c(D; R)_f$ by the same symbols.

Definition

For any knot diagram D, define the c-divisibility of $[\alpha]$ by:

$$k_c(D) := \max\{k \ge 0 \mid [\alpha] \in c^k H_c(D; R)_f \}.$$

Note that there is a filtration:

$$H_c(D; R)_f \supset cH_c(D; R)_f \supset \cdots \supset c^k H_c(D; R)_f \supset \cdots$$

so $k_c(D)$ is the maximal filtration level that contains $[\alpha]$.

Basic properties of $k_c(D)$

Proposition

$$0 \leq k_c(D) \leq n^-(D)$$

In particular if D is positive, then $k_c(D) = 0$. We can regard k_c as the measure of the "non-positivity" of the diagram.

Proposition

- 1. $k_c(D) = k_c(-D)$.
- 2. $k_c(D) + k_c(D') \le k_c(D \sqcup D').$

3. $k_c(D \# D') \le k_c(D \sqcup D') \le k_c(D \# D') + 1.$

Variance of k_c under Reidemeister moves

Proposition

Let D, D' be two diagrams of the same knot. Then

$$\Delta k_c = \frac{\Delta r - \Delta w}{2},$$

where the prefixed Δ is the difference of the corresponding numbers for D and D'.

Theorem (S.) For any knot K,

$$\bar{s}_c(K) := 2k_c(D) - r(D) + w(D) + 1$$

is an invariant of K.

Remark

 \bar{s}_c can also be defined for links.

Basic properties of $\bar{s}_c(K)$

Proposition

$$\bar{s}_c(K) \in 2\mathbb{Z}.$$

Proposition

$$1. \ \bar{s}_c(L) = \bar{s}_c(-L).$$

2.
$$\bar{s}_c(L \sqcup L') \geq \bar{s}_c(L) + \bar{s}_c(L') - 1.$$

3. $\bar{s}_c(L \# L') = \bar{s}_c(L \sqcup L') \pm 1.$

Contents

- 1. Introduction
- 2. Preliminary : Khovanov homology theory
- 3. Generalizing Lee's classes
- 4. $k_c(D)$ and $\bar{s}_c(K)$
- 5. Behavior of $\bar{s}_c(K)$ under cobordisms
- 6. Coincidence with s
- 7. Future prospects

Behavior under cobordisms (1/2)

The important properties of *s* are obtained by inspecting its behavior under cobordisms between knots. By tracing the arguments given in [Ras10], we obtain a similar proposition for \bar{s}_c .

Proposition (S.)

If S is an oriented connected cobordism between knots K, K', then

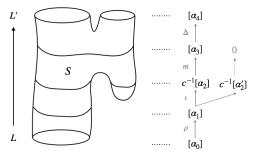
$$|\bar{s}_c(K') - \bar{s}_c(K)| \leq -\chi(S).$$

Remark

Similar statement holds for links.

Behaviour under cobordisms (2/2)

Proof sketch.



Decompose S into elementary cobordisms such that each factor corresponds to a Reidemeister move or a Morse move. Inspect the successive images of the α -class at each level.

Consequences

The previous proposition implies properties of \bar{s}_c that are common to the *s*-invariant:

Theorem (S.)

• \bar{s}_c is a knot concordance invariant in S^3 .

► For any knot K,

$$|\bar{s}_c(K)| \leq 2g_*(K).$$

If K is a positive knot, then

$$\bar{s}_c(K) = 2g_*(K) = 2g(K).$$

These properties suffice to reprove the Milnor conjecture.

Contents

- 1. Introduction
- 2. Preliminary : Khovanov homology theory
- 3. Generalizing Lee's classes
- 4. $k_c(D)$ and $\bar{s}_c(K)$
- 5. Behavior of $\bar{s}_c(K)$ under cobordisms
- 6. Coincidence with s
- 7. Future prospects

The refined canonical generators (1/2)

Now we focus on the case

 $(R,c) = (\mathbb{Q}[h],h), \operatorname{deg} h = -2$

and prove that $\bar{s}_h(-; \mathbb{Q}[h])$ coincides with s.

Recall that in general $[\alpha], [\beta]$ do not form a basis of $H_c(D; R)_f$. However in the above case, we can "normalize" them to obtain a class $[\zeta]$ such that $\{[\zeta], X[\zeta]\}$ is a basis of $H_c(D; R)_f$.

Moreover they are invariant under the Reidemeister moves, so it is reasonable to call them the "canonical generators" of $H_c(D; R)_f$.

Remark

X denotes an action on $H_c(D; R)$ defined by merging a circled labeled X to a neighborhood of a fixed point of D.

The refined canonical generators (2/2)

Proposition

There is a unique class $[\zeta] \in H_h(D; R)_f$ such that

- [ζ], X[ζ] form a basis of H_h(D; R)_f, and are invariant under the Reidemeister moves.
- $[\alpha], [\beta]$ can be described as

$$[\alpha] = h^k ((h/2)[\zeta] + X[\zeta])$$

$$[\beta] = (-h)^k (-(h/2)[\zeta] + X[\zeta]),$$

where $k = k_h(D)$.

Remark (1)

Unlike $[\alpha]$ or $[\beta]$, the definition of $[\zeta]$ is non-constructive.

Remark (2)

Currently this result is only obtained for knots.

The homomorphism property of \bar{s}_h

From the description of $[\alpha], [\beta]$ by the class $[\zeta],$ we can prove:

Proposition

For $(R, c) = (\mathbb{Q}[h], h)$,

•
$$k_h(D) + k_h(\overline{D}) = r(D) - 1.$$

•
$$k_h(D \# D') = k_h(D) + k_h(D').$$

where \overline{D} denotes the mirror image of D.

And we obtain:

Theorem (S.) For $(R, c) = (\mathbb{Q}[h], h)$, the invariant \bar{s}_h defines a homomorphism $\bar{s}_h \in Conc(S^3) \to 2\mathbb{Z}$

 \bar{s}_h : $Conc(S^3) \rightarrow 2\mathbb{Z}$.

Coincidence with the *s*-invariant (1/4)

Theorem (S.) For $(R, c) = (\mathbb{Q}[h], h)$, our $\bar{s}_h(-; \mathbb{Q}[h])$ coincides with s: $s(K) = 2k_h(D) + w(D) - r(D) + 1.$

Remark (1)

There is a well known lower bound for s [Shu07, Lemma 1.3]

$$s(K) \geq w(D) - r(D) + 1,$$

so $2k_h(D)$ gives the correction term of the inequality.

Remark (2)

Currently this result is only obtained for knots.

Coincidence with the *s*-invariant (2/4)

Proof.

Since both s and \bar{s}_h changes sign by mirroring, it suffices to prove

 $s(K) \geq \bar{s}_h(K).$

Recall that s(K) is defined by the (filtered) q-degree of $H_2(D; \mathbb{Q})$. On the other hand, q-degree on $H_h(D; \mathbb{Q}[h])$ gives a strict grading. There is a q-degree non-decreasing map

 $\pi: H_h(D; \mathbb{Q}[h]) \to H_2(D; \mathbb{Q})$

induced from $\mathbb{Q}[h] \to \mathbb{Q}, \ h \mapsto 2.$

Denote by $[\alpha_2], [\alpha_h]$ the α -classes of D in $H_2(D; F), H_h(D; \mathbb{Q}[h])$ respectively. Then by definition $\pi[\alpha_h] = [\alpha_2]$.

Coincidence with the *s*-invariant (3/4)

Proof continued.

Let
$$[\alpha_h] = h^k [\alpha'_h]$$
 with $k = k_h(D)$. Then from deg $h = -2$,

$$\mathsf{qdeg}_h([lpha'_h]) = \mathsf{qdeg}_h([lpha_h]) + 2k = w(D) - r(D) + 2k,$$

so we have

$$\begin{split} s(\mathcal{K}) &= \mathsf{qdeg}([\alpha_2]) + 1 \\ &= \mathsf{qdeg}(\pi[\alpha_h]) + 1 \\ &= \mathsf{qdeg}(\pi[\alpha'_h]) + 1 \\ &\geq \mathsf{qdeg}_h([\alpha'_h]) + 1 \\ &= w(D) - r(D) + 2k + 1 \\ &= \bar{s}_h(\mathcal{K}; \mathcal{F}[h]). \end{split}$$

Coincidence with the *s*-invariant (4/4)

Corollary

$$s(K) = \operatorname{qdeg}_h[\zeta] - 1.$$

Remark

Khovanov gave an alternative definition of s in [Kho06] by the q-degree of the generator of $H_{0,t}(D; \mathbb{Q}[t])$ where deg t = -4. The equivalence of the two definitions can be proved using the above result.

Contents

1. Introduction

- 2. Preliminary : Khovanov homology theory
- 3. Generalizing Lee's classes
- 4. $k_c(D)$ and $\bar{s}_c(K)$
- 5. Behavior of $\bar{s}_c(K)$ under cobordisms
- 6. Coincidence with s
- 7. Future prospects

Question (1) Are all \bar{s}_c equal to s?

Remark (1)

The s-invariant can be defined over any field F of char $F \neq 2$. In fact we can prove that

$$s(-;F)=\bar{s}_h(-;F[h]).$$

It is an open question whether s(-; F) for char $F \neq 2$ are all equal or not [LS14, Question 6.1]. If [Question 1] is solved affirmatively, then it follows that s(-; F) are all equal.

Remark (2)

In [LS14], an alternative definition of *s* over any field *F* (including char F = 2) is given. It is defined similarly to the original one, but is based on the filtered Bar-Natan homology. However C.Seed showed by direct computation that K = K14n19265 has $s(K; \mathbb{Q}) = 0$ but $s(K; \mathbb{F}_2) = -2$.

Question (2)

Can we construct $[\zeta] \in H_c(D; R)$ for any (R, c)?

The existence of $[\zeta] \in H_h(D; \mathbb{Q}[h])$ was the key to prove $s = \bar{s}_h$.

If such class exists in general, then we can expect that Question (1) can also be solved. However the current proof for $(R, c) = (\mathbb{Q}[h], h)$ cannot be applied to the general case.

Maybe we can find a more geometric (or combinatorial) construction.

Question (3) Does $s = \bar{s}_c(-; \mathbb{Q}[h])$ also hold for links?

The definition of *s* for links is given by Beliakova and Wehrli in [BW08]. Our \bar{s}_c can also be defined for links, so the question makes sense.

Maybe we can construct the canonical generators $[\zeta_1], \dots, [\zeta_{2^\ell}]$ of $H_h(D; \mathbb{Q}[h])$ such that the α -classes $\{[\alpha(D, o)]\}_o$ can be described by them.

Thank you!

https://arxiv.org/abs/1812.10258

References I

- [BW08] A. Beliakova and S. Wehrli. "Categorification of the colored Jones polynomial and Rasmussen invariant of links". In: Canad. J. Math. 60.6 (2008), pp. 1240–1266.
- [Kho00] M. Khovanov. "A categorification of the Jones polynomial". In: Duke Math. J. 101.3 (2000), pp. 359–426.
- [Kho06] M. Khovanov. "Link homology and Frobenius extensions". In: Fund. Math. 190 (2006), pp. 179–190.
- [KM93] P. B. Kronheimer and T. S. Mrowka. "Gauge theory for embedded surfaces. I". In: <u>Topology</u> 32.4 (1993), pp. 773–826.
- [Lee05] E. S. Lee. "An endomorphism of the Khovanov invariant". In: Adv. Math. 197.2 (2005), pp. 554–586.
- [LS14] R. Lipshitz and S. Sarkar. "A refinement of Rasmussen's S-invariant". In: Duke Math. J. 163.5 (2014), pp. 923–952.

References II

- [Mil68] J. Milnor. Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, pp. iii+122.
- [Ras10] J. Rasmussen. "Khovanov homology and the slice genus". In: Invent. Math. 182.2 (2010), pp. 419–447.
- [Shu07] A. N. Shumakovitch. "Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots". In: J. Knot Theory Ramifications 16.10 (2007), pp. 1403–1412.
- [Weh08] S. Wehrli. "A spanning tree model for Khovanov homology". In: J. Knot Theory Ramifications 17.12 (2008), pp. 1561–1574.