Complex analysis with Thurston theory in the Teichmüller theory

Hideki Miyachi

Kanazawa University

July 5, 2019

Topology and Geometry of Low-dimensional Manifolds, July 5-8, 2019 at しいのき迎賓館(金沢)

Welcome to Kanazawa !

Sightseeing

▶ Kenroku-en Garden : One of the three noted gardens in Japan.

▶ Kanazawa Castle Park:

Welcome to Kanazawa !

▶ Higashi Chaya District :

Foods

▶ Oden (Stew), Sushi (Seafoods), etc.

Enjoy at Kanazawa !!

- 1 Motivation
- 2 Notation
- 3 Main results
- 4 Application

Motivation

Section 1

Motivation

Question 1 (Long-standing problem (it used to be popular))

Study the shape of the deformation spaces of Kleinian groups.

Left : Bers slice for a square torus

Right : Bers slice for a hexagonal torus

(Courtesy of Professor Yasushi Yamashita)

Many pictures of the deformation spaces are drawn. All pictures are very impressed and yield many questions. For instance,

Question 1 (Long-standing problem (it used to be popular))

Study the shape of the deformation spaces of Kleinian groups.

Left : Bers slice for a square torus

Right : Bers slice for a hexagonal torus

(Courtesy of Professor Yasushi Yamashita)

Problem 1 (McMullen, Annals of Mathematics Studies 142 (1996))

Is the boundary of a Bers slice self-similar about the fixed points of pseudo-Anosov actions?

Hideki Mideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 6 / 33

- ▶ The boundary of the deformation space separates the representations into "discrete representations" and "non-discrete representations".
- ▶ Thurston's program (in '78) clarifies what the separation is : The Ending Lamination Theorem (settled by Brock, Canary and Minsky) tells us that the boundary (the separation) is parametrized by the end-invariants (Topological data +*α*).
- \blacktriangleright The study of the shape will clarify

How discrete and non-discrete representations are separated.

▶ Problems on the shape are problems after Thurston's program.

- ▶ The boundary of the deformation space separates the representations into "discrete representations" and "non-discrete representations".
- ▶ Thurston's program (in '78) clarifies what the separation is : The Ending Lamination Theorem (settled by Brock, Canary and Minsky) tells us that the boundary (the separation) is parametrized by the end-invariants (Topological data +*α*).
- \blacktriangleright The study of the shape will clarify

How discrete and non-discrete representations are separated.

▶ Problems on the shape are problems after Thurston's program.

Our strategy

- ▶ Trace functions are holomorphic functions on the ambient space and are local charts around the boundary.
- ▶ Holomorphic functions are very smooth (infinitesimally, complex linear). The local behavior of holomorphic functions on the bdy may reflect the (local) "shape" of the bdy (e.g. self-similality).
- ▶ For understanding the relation between the "shape" and end-invariants (Topology+*α*), we pose

Study holomorphic functions on the Bers closure from Thurston theory.

Our strategy

- ▶ Trace functions are holomorphic functions on the ambient space and are local charts around the boundary.
- ▶ Holomorphic functions are very smooth (infinitesimally, complex linear). The local behavior of holomorphic functions on the bdy may reflect the (local) "shape" of the bdy (e.g. self-similality).
- ▶ For understanding the relation between the "shape" and end-invariants (Topology+*α*), we pose

Question 2 (My long-standing problem (of course, not popular))

Study holomorphic functions on the Bers closure from Thurston theory.

Section 2

Notation

Notation

Notation

From Function theory (and Theory of Kleinian groups):

- ▶ Σ_g : a closed orientable surface of genus g (≥ 2).
- ▶ \mathcal{T}_g : the Teichmüller space of genus g .
- \blacktriangleright d_T : the Teichmüller distance.
- ▶ $\mathcal{T}_{x_0}^B$: the Bers slice with center $x_0 \in \mathcal{T}_g \ (\subset A^2(\mathbb{H}^*, \Gamma_0) \cong \mathbb{C}^{3g-3}).$

Notation Notation

▶ $\partial \mathcal{T}^B_{x_0}$: the Bers boundary.

From Thurston theory:

- ▶ *ML*, *PML* : measured laminations and projective measured laminations on Σ*g*.
- ▶ $\text{Ext}_x(F)$: the extremal length of $F \in \mathcal{ML}$.
- ▶ *SML*_{*x*} : the unit sphere ${F \in \mathcal{ML} \mid \text{Ext}_x(F) = 1}$ $(x \in \mathcal{T}_g)$. $\mathcal{SML}_x \cong \mathcal{PML}$ via the projection $\mathcal{ML}-\{0\} \to \mathcal{PML}.$

Notation

From Thurston theory (continued):

 \blacktriangleright \mathcal{SML}_x^{mf} : a subset of \mathcal{SML}_x consisting of minimal, filling measured laminations.

Notation Notation

- \blacktriangleright \mathcal{SML}_x^{ue} : a subset of \mathcal{SML}_x^{mf} consisting of uniquely ergodic measured laminations.
- \blacktriangleright \mathcal{PML}^{mf} , \mathcal{PML}^{ue} : corresponding subsets to \mathcal{SML}_x^{mf} and \mathcal{SML}_x^{ue} .

Proposition 1 (follows from two big theorems: DLT and ELT)

For $x \in \mathcal{T}_q$ *, there is a continuous map*

$$
\Xi_x \colon \mathcal{SML}_x^{mf} \cong \mathcal{PML}^{mf} \overset{onto}{\longrightarrow} \partial^{mf}\mathcal{T}^B_{x_0} \subset \partial \mathcal{T}^B_{x_0}
$$

 i *which induces a homeomorphism* $\mathcal{SML}_x^{ue} \cong \mathcal{PML}^{ue} \rightarrow \partial^{ue} \mathcal{T}_{x_0}^B$ *.*

Notation

From Thurston theory (continued):

▶ μ_{Th} : The Thurston measure (MCG-invariant measure on ML).

Notation Notation

 \blacktriangleright $\hat{\mu}^x_{Th}$: A Borel measure on \mathcal{SML}_x defined by

$$
\hat{\mu}_{Th}^x(E) = \frac{\mu_{Th}(\{tF \mid F \in E, 0 \le t \le 1\})}{\mu_{Th}(\{tF \mid F \in \mathcal{SML}_x, 0 \le t \le 1\})} \quad (E \subset \mathcal{SML}_x).
$$

 \blacktriangleright μ^B_x : the pushforward measure defined from $\hat{\mu}^x_{Th}$ via Ξ_x $(x \in \mathcal{T}_g)$, which is a Borel measure supported on $\partial\mathcal{T}_{x_0}^B$.

Complex analysis and Demailly's theory

▶ An upper-semicontinuous function *u* on a domain Ω *⊂* C *^N* is said to $\mathsf{b}\mathsf{e}\,$ plurisubharmonic if for any complex line $L(\cong\mathbb{C})$ in \mathbb{C}^N with $\Omega \cap L \neq \emptyset$, *u* | $\Omega \cap L$ is subharmonic on $\Omega \cap L$.

Notation Complex analysis

- ▶ A function *u* on a domain Ω *⊂* C *^N* is pluriharmonic if *u* and *−u* are plurisubharmonic. Any pluriharmonic function is locally the real part of a holomorphic function.
- $▶$ A bounded domain $Ω$ in \mathbb{C}^N is said to be hyperconvex if it admits a continuous and non-positive plurisubharmonic exhaustion *u* (i.e. ${x \in \Omega \mid u(x) < r}$ is relatively compact for each $r < 0$).

 R

÷.

Complex analysis and Demailly's theory

Theorem 2 (Demailly (1987))

Let Ω *be a hyperconvex domain in* C *^N . There is a positive Borel function* P^Ω *on* Ω *×* Ω *× ∂*Ω *and a family {µ* Ω *^x }x∈*^Ω *of Borel measures supported on ∂*Ω *such that*

Notation Complex analysis

- \blacktriangleright $d\mu^\Omega_y = \mathbb{P}_\Omega(x,y,\cdot) d\mu^\Omega_x$ for $x,y\in\Omega;$ and
- ▶ *any pluriharmonic function u on* Ω *which is continuous on* Ω *satisfies*

$$
u(x) = \int_{\partial\Omega} u(z) d\mu_x^{\Omega}(z) = \int_{\partial\Omega} u(z) \mathbb{P}_{\Omega}(x_0, x, z) d\mu_{x_0}^{\Omega}(z)
$$

*for fixed x*⁰ *∈* Ω*. Thus,* P^Ω *is the Poisson kernel for pluriharmonic* f unctions and μ_x^Ω is the pluriharmonic measure at $x\in\Omega$.

Complex analysis and Demailly's theory

Theorem 3 (Demailly (1987))

Any hyperconvex domain Ω *⊂* C *^N admits a unique pluricomplex Green function g*Ω*.*

We do not give the definition of the pluricomplex Green function here, but the pluricomplex Green function is very important to calculate the Poisson kernel. Roughly speaking,

Notation Complex analysis

$$
\mathbb{P}_{\Omega}(x, y, \zeta) = \lim_{z \to \zeta} \left(\frac{g_{\Omega}(y, z)}{g_{\Omega}(x, z)} \right)^N \tag{1}
$$

for $\zeta \in \partial \Omega$ (if the limit exists).

Notation Complex analysis

Complex analytic property on Teichmüller space

▶ Teichmüller space is hyperconvex (Krushkal). For instance,

$$
u(x) = -\frac{1}{\text{Ext}_x(F) + \text{Ext}_x(G)}
$$

is continuous non-negative plurisubharmonic exhaustion on $\mathcal{T}^B_{x_0} \cong \mathcal{T}_{g,m}$, when $F, G \in \mathcal{ML}$ fill Σ_g up (M).

▶ The pluricomplex Green function is obtained as

$$
g_{\mathcal{T}_{g,m}}(x,y) = \log \tanh d_T(x,y)
$$

for $x, y \in \mathcal{T}_{q,m}$ (Krushkal, M).

 \blacktriangleright The Bers slice $\mathcal{T}^B_{x_0}$ is polynomially convex (Shiga): holomorphic functions on the ambient space is dense in the space of holomorphic functions on $\mathcal{T}^B_{x_0}\cong \mathcal{T}_{g,m}$ in the compact open topology.

Main results

Section 3

Main results

Poisson integral formula

Theorem 1 (Pluriharmonic measure and Poisson kernel)

For the Bers slice $\mathcal{T}^B_{x_0}$ *, we have*

$$
\mu_y^B(E) = \int_E \mathbb{P}(x, y, \varphi) d\mu_x^B(\varphi) \quad (E \subset \partial \mathcal{T}_{x_0}^B)
$$

 w here $\mathbb P$ *is a measurable function on* $\mathcal T_g \times \mathcal T_g \times \partial \mathcal T_{x_0}^B$ *defined by*

$$
\mathbb{P}(x, y, \varphi) = \begin{cases} \left(\frac{\text{Ext}_x(F_{\varphi})}{\text{Ext}_y(F_{\varphi})}\right)^{3g-3} & (\varphi \in \partial^{ue} \mathcal{T}_{x_0}^B), \\ 1 & (\text{otherwise}) \end{cases}
$$
(2)

where F^φ is the measured lamination whose support is the ending lamination of the Kleinian manifold associated to φ.

Poisson integral formula

Theorem 2 (Poisson integral formula)

Let u be a pluriharmonic function on T^g which is continuous on the Bers closure. Then,

$$
u(x) = \int_{\partial \mathcal{T}_{x_0}^B} u(\varphi) d\mu_x^B(\varphi)
$$

=
$$
\int_{\partial \mathcal{T}_{x_0}^B} u(\varphi) \mathbb{P}(x_0, x, \varphi) d\mu_{x_0}^B(\varphi)
$$

Polynomially convexity implies :

 Any holomorphic function on $\mathcal{T}^B_{x_0}\cong \mathcal{T}_{g,m}$ is approximated by holomorphic functions represented by the Poisson integral formula.

Poisson integral formula

Theorem 3 (Schwarz type theorem)

Let V be a $\boldsymbol{\mu}_{x_0}^B$ -integrable function on $\partial \mathcal{T}_{x_0}^B$, which is continuous on *∂ ueT B x*0 *. Suppose that*

$$
\int_{\partial\mathcal{T}_{x_0}^B} V(\varphi)\overline{\partial}\mathbb{P}(x_0,x,\varphi)d\boldsymbol{\mu}_{x_0}^B(\varphi)=0
$$

as (0*,* 1)*-form on Tg. Then*

$$
P[V](x) = \int_{\partial \mathcal{T}_{x_0}^B} V(\varphi) \mathbb{P}(x_0, x, \varphi) d\mu_{x_0}^B(\varphi).
$$

is a holomorphic function on T^g satisfying

$$
\lim_{x \to \varphi} P[V](x) = V(\varphi) \quad (\varphi \in \partial^{ue} \mathcal{T}_{x_0}^B).
$$

Hideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 20 / 33

Why Poisson integral formula?

▶ Poisson integral formula and Schwarz type theorem gives an interaction

 $\{$ Some hol.fns on $\mathcal{T}_g\} \rightleftharpoons \{$ Meas. fns on $\partial\mathcal{T}^B_{x_0}$ with some condition $\}$

where the condition of a function V on $\partial\mathcal{T}_{x_0}^B$ is

$$
\int_{\partial\mathcal{T}_{x_0}^B} V(\varphi)\overline{\partial}\mathbb{P}(x_0,\cdot,\varphi)d\boldsymbol{\mu}_{x_0}^B(\varphi)=0
$$

as a $(0, 1)$ -form on \mathcal{T}_q .

▶ I suspect that the interaction induces the isomorphism

 $\{ \text{Bdd hol.fns on }\mathcal{T}_g\} \rightleftharpoons \{ L^{\infty} \text{-fns on }\partial \mathcal{T}^B_{x_0} \text{ with the condition}\}$

as complex Banach spaces (my ongoing project).

▶ Notice that every holomorphic function on the Bers closure is bounded (because the Bers closure is compact).

Hideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 21 / 33

Why Poisson integral formula?

▶ Poisson integral formula and Schwarz type theorem gives an interaction

 $\{$ Some hol.fns on \mathcal{T}_g $\} \rightleftharpoons \{$ Meas. fns on $\partial \mathcal{T}^B_{x_0}$ with some condition $\}$

where the condition of a function V on $\partial\mathcal{T}_{x_0}^B$ is

$$
\int_{\partial \mathcal{T}_{x_0}^B} V(\varphi) \overline{\partial} \mathbb{P}(x_0, \cdot, \varphi) d\boldsymbol{\mu}_{x_0}^B(\varphi) = 0
$$

as a $(0, 1)$ -form on \mathcal{T}_q .

∫

▶ I suspect that the interaction induces the isomorphism

 $\{ \mathsf{Bdd} \; \mathsf{hol}.\mathsf{fns} \; \mathsf{on} \; \mathcal{T}_g \} \rightleftharpoons \{ L^\infty\text{-}\mathsf{fns} \; \mathsf{on} \; \partial \mathcal{T}^B_{x_0} \; \mathsf{with} \; \mathsf{the} \; \mathsf{condition} \}$

as complex Banach spaces (my ongoing project).

▶ Notice that every holomorphic function on the Bers closure is bounded (because the Bers closure is compact).

Why Poisson integral formula?

▶ Poisson integral formula and Schwarz type theorem gives an interaction

 $\{$ Some hol.fns on \mathcal{T}_g $\} \rightleftharpoons \{$ Meas. fns on $\partial \mathcal{T}^B_{x_0}$ with some condition $\}$

where the condition of a function V on $\partial\mathcal{T}_{x_0}^B$ is

$$
\int_{\partial \mathcal{T}_{x_0}^B} V(\varphi) \overline{\partial} \mathbb{P}(x_0, \cdot, \varphi) d\boldsymbol{\mu}_{x_0}^B(\varphi) = 0
$$

as a $(0, 1)$ -form on \mathcal{T}_q .

∫

▶ I suspect that the interaction induces the isomorphism

 $\{ \mathsf{Bdd} \; \mathsf{hol}.\mathsf{fns} \; \mathsf{on} \; \mathcal{T}_g \} \rightleftharpoons \{ L^\infty\text{-}\mathsf{fns} \; \mathsf{on} \; \partial \mathcal{T}^B_{x_0} \; \mathsf{with} \; \mathsf{the} \; \mathsf{condition} \}$

as complex Banach spaces (my ongoing project).

- ▶ Notice that every holomorphic function on the Bers closure is bounded (because the Bers closure is compact). .
◆ (日本) → (日本) → 三十一〇〇〇
- Hideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 21/33

Why are boundary functions important?

- ▶ As noticed before, hol.fns are very smooth (infinitesimally, complex linear) and the local behavior of hol.fns on the bdy reflects the (local) "shape" of the bdy (e.g. self-similality).
- ▶ The Poisson integral formula is rewritten as

$$
P[V](x) = \int_{\mathcal{P}_{\mathcal{MF}}} \hat{V}([H]) \left(\frac{\text{Ext}_{x_0}(H)}{\text{Ext}_x(H)} \right)^{3g-3} d\hat{\mu}_{Th}^{x_0}([H])
$$

 \hat{V} is a measurable fn on $\mathcal{SML}_{x_0}\cong \mathcal{PML}$ (cont.on $\mathcal{SML}_{x_0}^{mf}\cong \mathcal{PML}^{mf}$ if V is cont.on the Bers closure) defined by

$$
\hat{V}=V\circ \Xi_{x_0}.
$$

Problem : Is the condition easy to use?

▶ The condition for boundary functions is

$$
\int_{\partial \mathcal{T}_{x_0}^B} V(\varphi) \overline{\partial} \mathbb{P}(x_0,\cdot,\varphi) d\boldsymbol{\mu}_{x_0}^B(\varphi) = 0.
$$

▶ The condition is rewritten as

$$
\int_{\mathcal{PMF}} \hat{V}([H]) \left(\frac{\text{Ext}_{x_0}(H)}{\text{Ext}_x(H)} \right)^{3g-3} \frac{\overline{q_{H,x}}}{\|q_{H,x}\|} d\hat{\mu}_{Th}^{x_0}([H]) = 0 \quad (\forall x \in \mathcal{T}_g)
$$

where

$$
\hat{V} = V \circ \Xi_{x_0} \quad \text{(defined on } \mathcal{SML}_{x_0} \cong \mathcal{PML})
$$

by Gardiner's formula and the definition of the measure $\boldsymbol{\mu}_{x_0}^B$, where $q_{H,x}$ is the Hubbard-Masur differential on $x\in \mathcal{T}_g$ for $H\in \mathcal{ML}.$

▶ Honestly speaking, it is hard to say easy, but I hope it is rewritten for application (and understanding the local behavior).

Hideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 24 / 33

Problem : Is the condition easy to use?

▶ The condition for boundary functions is

$$
\int_{\partial \mathcal{T}^{B}_{x_0}}V(\varphi)\overline{\partial}\mathbb{P}(x_0,\cdot,\varphi)d\boldsymbol{\mu}^{B}_{x_0}(\varphi)=0.
$$

 \blacktriangleright The condition is rewritten as

$$
\int_{\mathcal{PMF}} \hat{V}([H]) \left(\frac{\operatorname{Ext}_{x_0}(H)}{\operatorname{Ext}_x(H)} \right)^{3g-3} \frac{\overline{q_{H,x}}}{\|q_{H,x}\|} \, d\hat{\mu}_{Th}^{x_0}([H]) = 0 \quad (\forall x \in \mathcal{T}_g)
$$

where

$$
\hat{V} = V \circ \Xi_{x_0} \quad \text{(defined on } \mathcal{SML}_{x_0} \cong \mathcal{PML})
$$

by Gardiner's formula and the definition of the measure $\boldsymbol{\mu}_{x_0}^B$, where $q_{H,x}$ is the Hubbard-Masur differential on $x\in \mathcal{T}_g$ for $H\in \mathcal{ML}.$

▶ Honestly speaking, it is hard to say easy, but I hope it is rewritten for application (and understanding the local behavior).

Hideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 24 / 33

Problem : Is the condition easy to use?

▶ The condition for boundary functions is

$$
\int\limits_{\partial\mathcal{T}^{B}_{x_0}}V(\varphi)\overline{\partial}\mathbb{P}(x_0,\cdot,\varphi)d\boldsymbol{\mu}^{B}_{x_0}(\varphi)=0.
$$

 \blacktriangleright The condition is rewritten as

$$
\int_{\mathcal{PMF}} \hat{V}([H]) \left(\frac{\operatorname{Ext}_{x_0}(H)}{\operatorname{Ext}_x(H)} \right)^{3g-3} \frac{\overline{q_{H,x}}}{\|q_{H,x}\|} d\hat{\mu}_{Th}^{x_0}([H]) = 0 \quad (\forall x \in \mathcal{T}_g)
$$

where

$$
\hat{V} = V \circ \Xi_{x_0} \quad \text{(defined on } \mathcal{SML}_{x_0} \cong \mathcal{PML})
$$

by Gardiner's formula and the definition of the measure $\boldsymbol{\mu}_{x_0}^B$, where $q_{H,x}$ is the Hubbard-Masur differential on $x\in \mathcal{T}_g$ for $H\in \mathcal{ML}.$

▶ Honestly speaking, it is hard to say easy, but I hope it is rewritten for application (and understanding the local behavior).

Hideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 24 / 33

Problem : Is the condition easy to use?

Question 3

How do we rewrite the condition for use?

▶ To analyse the condition of bdy fns:

$$
\int_{\mathcal{PMF}} \hat{V}([H]) \left(\frac{\operatorname{Ext}_{x_0}(H)}{\operatorname{Ext}_x(H)} \right)^{3g-3} \frac{\overline{q_{H,x}}}{\|q_{H,x}\|} d\hat{\mu}_{Th}^{x_0}([H]) = 0 \quad (\forall x \in \mathcal{T}_g),
$$

we (probably) need to study the "infinitesimal structure" of the Bers boundary for localizing the condition.

- ▶ For this, we will (or may) need to study (I suspect)
	- \bullet the "infinitesimal" behavior of the map $\Xi_{x_0}\colon \mathcal{PML}^{mf} \to \partial^{mf}\mathcal{T}^B_{x_0}$ (*PML* has PL structure)
	- *•* the "infinitesimal structure" of the ending lamination space (the space of end-invariants).

Problem : Is the condition easy to use?

Question 3

How do we rewrite the condition for use?

▶ To analyse the condition of bdy fns:

$$
\int_{\mathcal{PMF}} \hat{V}([H]) \left(\frac{\operatorname{Ext}_{x_0}(H)}{\operatorname{Ext}_x(H)} \right)^{3g-3} \frac{\overline{q_{H,x}}}{\|q_{H,x}\|} d\hat{\mu}_{Th}^{x_0}([H]) = 0 \quad (\forall x \in \mathcal{T}_g),
$$

we (probably) need to study the "infinitesimal structure" of the Bers boundary for localizing the condition.

- ▶ For this, we will (or may) need to study (I suspect)
	- \bullet the "infinitesimal" behavior of the map $\Xi_{x_0}\colon \mathcal{PML}^{mf} \to \partial^{mf}\mathcal{T}^B_{x_0}$ (*PML* has PL structure)
	- *•* the "infinitesimal structure" of the ending lamination space (the space of end-invariants).

Summary

Question 4 (Main problem (already appeared))

Study the shape of the deformation space of Kleinian groups

- ▶ Holomorphic functions on the ambient space are local charts on the boundary.
- ▶ Holomorphic functions on the Bers closures are represented by the Poisson integral.
- ▶ Boundary functions are thought of as measurable functions on *PML*.
- ▶ The "local complexity" of the Bers boundary reflects the local behavior of the boundary functions.
- ▶ We are looking for the condition of boundary functions for discussing the local behavior.

Idea of the proof

Idea

Use Demailly's theory.

- ▶ Determine the Poisson kernel
	- *•* Applying Extremal length geometry (Kerckhoff, Gardiner-Masur, M). We can see

$$
\lim_{z \to \varphi} \frac{g_{\mathcal{T}_{g,m}}(y,z)}{g_{\mathcal{T}_{g,m}}(x,z)} = \lim_{z \to \varphi} \frac{\log \tanh d_T(y,z)}{\log \tanh d_T(x,z)} = \frac{\operatorname{Ext}_x(F_\varphi)}{\operatorname{Ext}_y(F_\varphi)}
$$

for $\varphi \in \partial^{ue} \mathcal{T}_{x_0}^B$ (cf. (1)). Notice the Kerckhoff formula

$$
d_T(x, y) = \log \sup_{F \in \mathcal{MF}-\{0\}} \frac{\operatorname{Ext}_x(F)}{\operatorname{Ext}_y(F)} \quad (x, y \in \mathcal{T}_{g,m}).
$$

- ▶ Pluriharmonic measure coincides with the pushforward measure.
	- *•* Pluriharmonic measure is absolutely continuous w.r.t. the pushforward measure (+ Ergodicity of the MCG-action on *PML* (Masur)).
- *•* (Technical part) Comparing the pluriharmonic measure and measures from extremal length.

Chi (Kanazawa Univ.) Hideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 27 / 33

Application

Section 4

Application

Hubbard-Masur function is constant

Corollary 4 (Hubbard-Masur function is constant (Mirzakhani-Dumas))

The Hubbard-Masur function

$$
\mathcal{T}_{g,m} \ni x \mapsto \text{Vol}_{Th}(x) = \mu_{Th}(\mathcal{BML}_x)
$$

is a constant function where
$$
\mathcal{BML}_x = \{F \in \mathcal{ML} \mid \text{Ext}_x(F) \leq 1\}.
$$

Hubbard-Masur function is constant

Corollary 4 (Hubbard-Masur function is constant (Mirzakhani-Dumas))

The Hubbard-Masur function

$$
\mathcal{T}_{g,m} \ni x \mapsto \text{Vol}_{Th}(x) = \mu_{Th}(\mathcal{BML}_x)
$$

is a constant function where $\mathcal{BML}_x = \{F \in \mathcal{ML} \mid \text{Ext}_x(F) \leq 1\}$ *.*

Proof.

$$
1 = \int_{\mathcal{PML}} \left(\frac{\operatorname{Ext}_{x_0}(F)}{\operatorname{Ext}_x(F)} \right)^{3g-3} d\hat{\mu}_{Th}^{x_0}([F])
$$

=
$$
\frac{1}{\operatorname{Vol}_{Th}(x_0)} \int_{\mathcal{BML}_{x_0}} \left(\frac{\operatorname{Ext}_{x_0}(F)}{\operatorname{Ext}_x(F)} \right)^{3g-3} d\mu_{Th}(F) = \frac{\operatorname{Vol}_{Th}(x)}{\operatorname{Vol}_{Th}(x_0)}.
$$

Hideki Miyachi (Kanazawa Univ.) Complex Analysis July 5, 2019, Kanazawa 29 / 33

Representation of holomorphic quadratic differentials

Let *V* be a pluriharmonic function on $\mathcal{T}_{g,m}$ which is continuous on the Bers closure. Then,

$$
V(x) = \int_{\mathcal{PML}} \hat{V}([F]) \left(\frac{\text{Ext}_{x_0}(F)}{\text{Ext}_x(F)} \right)^{3g-3} d\hat{\mu}_{Th}^{x_0}([F]),
$$

$$
(\partial V)_x = (3g - 3) \int_{\mathcal{PML}} \hat{V}([F]) \left(\frac{\operatorname{Ext}_{x_0}(F)}{\operatorname{Ext}_x(F)} \right)^{3g-3} \frac{q_{F,x}}{\|q_{F,x}\|} d\hat{\mu}_{Th}^{x_0}([F]),
$$

because of the Gardiner formula:

$$
(\partial \text{Ext.}(F))_x = -q_{F,x} \quad (x \in \mathcal{T}_{g,m})
$$

and *∥qF,x∥* = Ext*x*(*F*), where *qF,x* is the Hubbard-Masur differential for $F \in \mathcal{ML}$ at $x \in \mathcal{T}_{g,m}$.

Representation of holomorphic quadratic differentials

Let V be a pluriharmonic function on $\mathcal{T}_{g,m}$ which is continuous on the Bers closure. Then,

$$
V(x) = \int_{\mathcal{PML}} \hat{V}([F]) \left(\frac{\text{Ext}_{x_0}(F)}{\text{Ext}_x(F)} \right)^{3g-3} d\hat{\mu}_{Th}^{x_0}([F]),
$$

$$
(\partial V)_x = (3g-3) \int_{\mathcal{PML}} \hat{V}([F]) \left(\frac{\operatorname{Ext}_{x_0}(F)}{\operatorname{Ext}_x(F)} \right)^{3g-3} \frac{q_{F,x}}{\|q_{F,x}\|} d\hat{\mu}_{Th}^{x_0}([F]),
$$

because of the Gardiner formula:

$$
(\partial \text{Ext.}(F))_x = -q_{F,x} \quad (x \in \mathcal{T}_{g,m})
$$

and *∥qF,x∥* = Ext*x*(*F*), where *qF,x* is the Hubbard-Masur differential for $F \in \mathcal{ML}$ at $x \in \mathcal{T}_{g,m}$.

Representation of holomorphic quadratic differentials

For $\gamma \in \pi_1(\Sigma_g)$, let $\Theta_{\gamma,x}$ be a holomorphic quadratic differential with

$$
d\, \mathrm{hLeng}_{\gamma}[v] = \mathrm{Re} \int_M \mu \Theta_{\gamma,x}
$$

for $v = [\mu] \in T_x \mathcal{T}_g$ at $x = (M, f) \in \mathcal{T}_{g,m}$ (Gardiner, Wolpert).

Theorem 5

$$
\Theta_{\gamma,x}=\frac{3g-3}{\sinh(\text{hLeng}_\gamma(x)/2)}\int_{\mathcal{PML}^{mf}}\text{tr}^2(\rho_{\varphi_{F,x}}(\gamma))\frac{q_{F,x}}{\|q_{F,x}\|}d\hat{\mu}^{x_0}_{Th}([F])
$$

 $\mathsf{where}~ \varphi_{F,x} \in \partial \mathcal{T}^B_{x_0}~([F] \in \mathcal{PMF}^{mf})$ is the totally degenerate group *whose ending lamination is the support of F.*

Application Thanks

Thank you very much for your attention $($ $\hat{ }$ $)$ / !! ご静聴ありがとうございました.