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Foreword

This talk is about identities for functions on Teichmeueller space
and more generally relations between classes of functions.
We will discuss three ways of proving these relations

1. Geometric

2. (Discrete) Line integrals in a graph

3. Differentiation on Teichmeuller space.



Part I

Introduction



One holed torus, notation

I Σ is a hyperbolic one holed torus, totally geodesic boundary
∂Σ or a puncture

I T (Σ) its Teichmueller space

I α, β a pair of closed simple geodesics that meet in a single
point x .

I α, β ∈ π1(Σ) are a pair of generators

I `α the length of α and τα the Fenchel-Nielsen paramater for α

I ∂/∂τα the Fenchel-Nielsen paramater for α
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Closed Geodesics

Lemma (Pinching α)

Let Σ be a hyperbolic surface and α, β ⊂ Σ a pair of distinct
closed (simple) geodesics which intersect in x with θ the angle
between them at x. Then

sinh(`α/2) sinh(`β/2) ≥ 1.

So that if `α → 0 then `β →∞.

First relation: Let α, β a pair of closed simple geodesics that meet
in a single point on a torus with totally geodesic boundary γ. Then

sinh(`α/2) sinh(`β/2) sin θ = cosh(`γ/4).



Part II

Identities



Identity for embedded pants
Σ has a single boundary component of length `(δ) ≥ 0

I Punctured torus `(δ) = 0∑
α

1

1 + e`(α)
=

1

2

I One-holed torus

∑
α
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1
2
(−`(α)+`(δ))

1 + e
1
2
(−`(α)−`(δ))

)
= `(δ)

I One-holed genus g

∑
P

2 log

(
1 + e

1
2
(−`(α)−`(β)+`(δ))

1 + e
1
2
(−`(α)−`(β)−`(δ))

)
= `(δ)

P is an embedded pair of pants with waist δ and legs α, β
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Properties of Gap functions

D(x , y , z) = 2 log

(
1 + e

1
2
(x−y−z)

1 + e
1
2
(−x−y−z)

)

I D is monotone increasing in x = `δ decreasing in y , z
⇒ if ∂Σ gets longer then so do closed simple geodesics.

I Under ”rescaling” D converges to a piecewise linear function.

2

t
log

(
1 + e

1
2
(x−y−z)t

1 + e
1
2
(−x−y−z)t

)
→
{

x − y − z y + z < x
0 y + z ≥ x

Rescaling can be used to “tropicalise” the surface as boundary
length →∞.



Motivation

I Work of Hu, Tan, Zhang : A NEW IDENTITY FOR
SL(2,C)-CHARACTERS OF THE ONCE PUNCTURED
TORUS GROUP
Dedicated o Professor Sadayoshi Kojima on the occasion of
his sixtieth birthday.

I A curious paper of Zagier (in French) about relations between
special values of the zeta function.



Hu, Tan, Zhang

In terms of lenngths they actually show that the foollowing sum
equals 1:

∑
α

(
1−

sinh( `α2 ) cosh( `α2 )

cosh2( `α2 )− cosh2(
`γ
4 )

)
+
∑
β

tanh(
`β
2 )

cosh2(
`β
2 )− cosh2(

`γ
4 )
.

The first sum is over all simple closed geodesics and the second
only those passing through the same pair of Weierstrass points.



Don Zagier



Part III

Geometric constrction



Geometric Decompositions

Decomposition:

some space X = (t{geometric pieces}) t {negligible}
I X = ∂Σ

I X = unit tangent bundle Σ,
negligible = geodesics that stay in convex core.



Pants

∑
α

2 log

(
1 + e

1
2
(`(α)+`(β)−`(δ))

1 + e
1
2
(`(α)+`(β)+`(δ))

)
= `(δ)

What is the associated decomposition of the surface ?



Gap decomposition of δ

Define X ⊂ δ to be the set of x starting points for
γx := geodesic leaving δ at right angles which

I is simple

I stays in the surface forever.

Most geodesics don’t stay inside forever.
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Gap decomposition of the boundary geodesic δ
The geodesic ray γx
I either exits a pair of pants by one of the boundaries α, β.

I or spirals to one of the boundaries α, β.

Lemma
There are a pair of intervals ⊂ δ which contain no point of X



Proof : the D gaps



Part IV

Renormalised line integral



Markoff Tree
Solutions in positive integers of

X 2 + Y 2 + Z 2 − XYZ = 0

obviously symmetric i.e. invariant under cyclic permutation

U : (X ,Y ,Z ) 7→ (Y ,Z ,X ).

Theorem (Cohn)

Triples of solutions are 1-1 with triples of ( cosh length/2 of)
closed geodesics in Σ that meet pairwise in exactly one point.



Markoff Tree

If (X ,Y ,Z = Z±) is a pair of solutions of

0 = X 2 + Y 2 + Z 2 − XYZ = Z 2 − XY (Z ) + (X 2 + Y 2)

then Z+ + Z− = XY and there is a root swapping involution.

S : (X ,Y ,Z+) 7→ (X ,Y ,Z−)

MCG(Σ) ' PSL(2,Z) ' Z/2Z ∗ Z/3Z ' 〈S〉 ∗ 〈U〉



Labelled complementary regions



Coboundaries

If

I X is a space

I T : X 7→ X a transformation (bijection)

I F : X 7→ R a function

Then 1-coboundary is just the difference

f := F ◦ T − F .

These are “trivial cocycles, sums over T n “telescope”.

n∑
0

f ◦ T k = F ◦ T n+1 − F

What are the 1-coboundaries for τα i.e. the Dehn twist round α ?



1-Coboundary
I Dehn twist action

β−1 = τ−1α (β0) = α−1β ∈ π1(Σ)

βn+1 := τα(βn) = α.βn

τα : β−1 7→ β0 7→ β1
Markoff triples (α, β0, β−1) 7→ (α, β1, β0)

T : . 7→ (X ,Y ,Z−) 7→ (X ,Z+,Y )

I Dehn twist action

T : (X ,Y ,Z ) 7→ ((X ,XY − Z ,Y ).

I 1-coboundary F := Z/Y = Z−/Y , F ◦ T = Y /Z+

F ◦ T − T = Y /Z+ − Z−/Y

=
Y 2 − (XY − Z )Z

YZ
=

Y 2 + Z 2 − XYZ

YZ
=

X 2

YZ



1-Coboundary

Write the action as

T : (X ,Yn,Yn−1) 7→ (X ,Yn+1,Yn)

(
Yn+1

Yn

)
:=

(
X −1
1 0

)(
Yn

Yn−1

)
Consider the cocycle f = F ◦ T − T = X 2

YZ and sum

∞∑
−∞

f ◦ T n = lim
n→∞

Yn+1/Yn − lim
n→−∞

Yn+1/Yn

= difference of the eigenvalues

= e`α/2 − e−`α/2

= 2 sinh(`α/2)



Bowditch’s method: line integral in a graph

Let Γ = (V ,E ) be the Bass-Serre tree embedded in the unit disc
as before. Each complementary
Let Γ∗ = (E ,E ∗) where two edges are adjacent if they meet in a
vertex :

I not a tree there are 3 cycles.

I every vertex is order 4.

I mark the edges with values of the 1-coboundary

I round each cycle sum of the 1-coboundary is 1

X 2 + Y 2 + Z 2 = XYZ
X

YZ
+

Y

XZ
+

Z

XY
= 1



Labelled Γ∗



Labelled Γ∗



Labelled Γ∗



Bowditch’s method: line integral in a graph

Let Γ∗ = (E ,E ∗)

I mark the edges with values of the coboundary

I round each cycle sum of the coboundary is 1

1. Take a connected subgraph with no vertices of valence 1. i.e.
a union of n 3-cycles.

2. Sum the coboundaries = ] 3 cycles = n

3. Separate the edges into arcs = connected unions of edges in
the same complementary region of Γ

4. Deal with the arcs in 2 ways
I if the arc is a single edge then show that the coboundary value

is very small
I if the arc is long approximate the sum by

(1/X )
∑∞
−∞ f ◦ T n = 2sinh(`α/2)/2cosh(`α/2) = tanh(`α/2)



Long and short



Bowditch’s method: line integral in a graph

Let Γ∗ = (E ,E ∗)

I n = sum of coboundaries over a subgraph

1. arc = connected unions of edges in the same complementary
region of Γ

2. I if the arc is a single edge then the coboundary value is very
small

I if the arc is long approximate the sum by
1
X

∑∞
−∞ f ◦ T n = 2sinh(`α/2)/2cosh(`α/2) = tanh(`α/2)

3. So for a finite number of closed simple geodesics in 1-1
correspondencs with the log arcs :∑
α

tanh(`α/2) = n − o(1)⇒
∑
α

1− tanh(`α/2) = 1− o(1)



Moral

What Bowditch does is to sum over all possible values of the
coboundary X/YZ

X

YZ
+

Y

XZ
+

Z

XY
= 1

allows one to see that the sum is constant after rescaling.

Pink region has area 2. X
YZ ,

Y
XZ ,

Z
XY are ”angles” at the cusp.



Part V

Proof by differentiation



Differentiation
α, β closed oriented geodesics meet just once at x then

I In fact there are 3 points - the Weierstrass points such that
ever closed simple geodesic passes through exactly 2 of the 3
points.

I sinh(`α/2) sinh(`β/2) sin(α∠β) = cosh(`γ/4).

The sum of all the angles at a Weierstrass point ?
Let G < PSL(2,Z) 'MCG(Σ) be the maximal subgroup that
“fixes Weierstrass points i.e.

x = α ∩ β = φ(α) ∩ φ(β), ∀φ ∈ G .

Let J be the element J(α) = β, J(β) = −α) so that

α∠β + J(α)∠J(β) = α∠β + β∠(−α) = π.

∑
G

φ(α)∠φ(β) =
∑
J\G

φ(α)∠φ(β) +
∑
J\G

φ(J(α))∠φ(J(β))

= ∞× π



Differentiation

Want to show that the derivative of
∑

G φ(α)∠φ(β) is constant
using

α∠β + β∠(−α) = π ⇒ dα∠β + dβ∠(−α) = 0

so we have to show that
∑

G dφ(α)∠φ(β) is absolutely
convergent.

sin(α∠β) =
cosh(`γ/4)

sinh(`α/2) sinh(`β/2)
.

so that

d(α∠β) = A(`α, `β)d`α + B(`α, `β)d`β



Differentiation

Theorem (Kerckhoff, Wolpert)

d`γ .
∂

∂τα
=
∑

x∈α∩γ
cos θx

where

I d`γ is the variation of `γ
I ∂(.)/∂τα is the vector field that generates the Fenchel-Nielsen

twist deformation τα along α

I θx is the angle between α and γ at the intersection point x

Corollary (Remark?)

d`α.
∂

∂τα
=
∑
x∈∅

= 0,

i.e. ∂
∂τα

is a tangent vector to the level sets of `α.



Differentiation: Transversality

I ∂
∂τα

is a tangent vector to the level sets of `α.

I Let α, β a pair of closed simple geodesics that meet in a single
point.

d`α.
∂

∂τα
= 0, d`γ .

∂

∂τα
= cos θx 6= 0

I The vector fields
∂

∂τα
,
∂

∂τβ

are a basis for the tangent bundle on an open dense set of
T (Σ) namely {X ∈ T (Σ), cos θx 6= 0}.

Corollary (Trivial Bound)∣∣∣∣d`γ . ∂∂τα
∣∣∣∣ ≤ i(α, γ) := ](α ∩ γ)



Differentiation: Absolute convergence

Lemma
Let α, β a pair of closed simple geodesics that meet in a single
point. Then

‖d`γ‖ :=

∣∣∣∣d`γ . ∂∂τα
∣∣∣∣+

∣∣∣∣d`γ . ∂∂τβ
∣∣∣∣

defines a norm on {x , cos θx 6= 0}.
Of course one has the bound :

‖d`γ‖ ≤ i(α, γ) + i(β, γ).



Differentiation: Absolute convergence
Using the trivial bound and the formula for α∠β :

Theorem (M.)

The derivatives of the angle sum converge absolutely.

Lemma
α∠β is a coboundary for τγ .

Proof.
Complete γ to be a Markoff triple of geodesics α, β, γ so that

β = γα ∈ π1(Σ)⇒ β = τγ(α).

Take the shortest arc I between x = α ∩ β and define a function F
on simple arcs from x to γ.

α∠β = I∠β − I∠α = F ◦ τγ − F .

�



An identity

Using the cocycle and renormalising correctly we prove :

Theorem (M.)

∑
α

arctan

(
cosh(`δ/4)

sinh(`α/2)

)
=

3π

2

We can split this into 3 identities using the Weierstrass points:∑
α

arctan

(
cosh(`δ/4)

sinh(`α/2)

)
=
π

2

One can find the value of the series by letting `α → 0:

I the biggest term → arctan(∞) = π/2

I all other terms → 0.

but there is a delicate issue of convergence...



An identity from the sum of all the angles
Final remarks : 3 methods for proving identities

I Geometric

I Integral

I Differential

It may be possible to prove relations between sums of lengths by
realising Γ∗ as a path in Teichmueller space and “pulling back”
1-forms on Teichmueller space to Γ∗.
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