Strongly quasipositive links, cyclic branched covers and L-spaces

Topology and Geometry of Low-dimensional Manifolds Kanasawa June 2019

Joint work with Steve Boyer and Cameron Gordon

Heegaard Floer theory is a homology package of 3-manifold invariants developped by Ozsváth and Szabó which is relatively powerful in distinguishing manifolds from each other.

The simplest version of these invariants come in the form of \mathbb{Z}_2 -graded abelian groups $\widehat{HF(M)}$, whose. Euler characteristic verifies :

$$\chi(\widehat{HF}(M)) = |H_1(M;\mathbb{Z})|$$

L-spaces are the class of rational homology spheres M for which the Heegaard Floer homology is as simple as possible, which means that :

$$\dim_{\mathbb{Z}_2} \widehat{HF(M)} = |H_1(M;Z)|.$$

Exemples of L-spaces include S^3 , the Lens saces, and more generally all manifolds admitting elliptic geometry.

イロト 不得下 イヨト イヨト 二日

The 2-fold branched covering of any alternating knots or links is an L-space (Ozsváth-Szabó), providing infinitly many examples of hyperbolic L-spaces.

Conjecture (Boyer-Gordon-Watson)

For a closed, connected, orientable, irreducible 3-manifold M the following three properties are equivalent :

- M is not an L-space;
- Ø M carries a co-oriented taut foliation;
- M has a left-orderable fundamental group.

If M carries a co-orientable taut foliation then it is not an L-space [Ozsváth- Szábo].

The conjecture is true for a graph manifolds [Hanselman-Rasmussen-Rasmussen-Watson].

< □ > < ---->

Here is the statement of a Heegaard-Floer version of Poincaré conjecture, due to Ozsváth and Szábo.

Conjecture (O-Z)

The sphere S^3 and the Poincaré sphere are the only prime integer homology sphere L-spaces.

The conjecture holds when M is obtained by surgery on a knot in S^3 .

It is widely open for *n*-fold cyclic covers of S^3 branched over a knot, even for n = 2.

Conjecture (O-Z for cyclic branched covers)

An L-space integer homology sphere is a n-fold cyclic cover of S^3 branched over a non trivial prime knot K, if and only if n = 2, 3 or 5 and K is the (3,5), (2,5) or (2,3) torus knot.

Question

Which knots or links in S^3 have L-spaces as n-fold cyclic branched coverings?

We will address this question for the class of strongly quasipositive links.

A link L is quasipositive (**qp**) if there is a smooth holomorphic curve $C \subset \mathbb{C}^2$ which is transverse to $S^3 = \partial B^4$ such that $L = C \cap S^3$.

L is strongly quasipositive (sqp) if there is a smooth holomorphic curve *C* as above such that $L = C \cap S^3$ and $F = C \cap B^4$ can be isotoped (rel *L*) into S^3 .

A link is positive if it has a diagram all of whose crossings are positive.

```
Thm (Lee Rudolph, Takuji Nakamura)\{positive links \} \subsetneq \{sqp links\} \subsetneq \{qp links \}.
```

L-space knots

L-space knots are knots producing L-spaces by Dehn surgery.

They are **sqp** and fibred [O-Z, Y. Ni, M. Hedden]. Torus knots are L-space knots.

Question (Allison Moore)

If K is a hyperbolic L-space knot, is it true that $\Sigma_2(K)$ is not an L-space?

Here is a generalisation of A. Moore's Question.

Conjecture

If K is a prime fibred sqp prime for which some $\Sigma_n(K)$ is an L-space, then K is a (2, k), (3, 4), or (3, 5) torus knot.

This can be shown to be true for example for :

- prime fibred alternating, or Montesinos, or special arborescent, sqp knots,
- positive closed braids (by S. Baader)

(日) (同) (日) (日) (日)

Genera

All links $L \subset S^3$ are oriented and considered up to mirror image.

Convention : *L* is a **sqp** or a **qp** link if either *L* or its mirror image has this property.

A Seifert surface for L is an oriented surface with no closed components whose oriented boundary is L.

For a link $L \subset S^3$ we associate 3 different genera :

-The Seifert genus g(L) = the minimal genus of a Seifert surface for L.

-The slice genus $g_4(L)$ = the minimal genus of a smooth properly embedded surface bounding L in B^4 .

-The (topologically) locally flat 4-ball genus $g_4^{top}(L) =$ the minimal genus of a locally flat properly embedded surface bounding L in B^4 .

The following inequalities hold : $g_4^{top}(L) \le g_4(L) \le g(L)$

Quasipositivity

Thm (Kronheimer-Mrowka)

Let $L = C \cap S^3$ be **qp** with $F = C \cap B^4$ a piece of holomorphic curve :

 $\chi(F) = \max{\chi(F') : F' \text{ a smooth slice surface for } L} = \chi_4(L)$

Hence if L is a knot K, $g_4(K) = g(F)$

Moreover if L is an sqp link with F isotopic (rel L) into S^3 , then :

 $\chi_4(K) = \chi(F) = \chi(L).$

(日) (周) (三) (三)

Seifert surface

Each Seifert surface F of L determines a bilinear Seifert form $S_F : H_1(F) \times H_1(F) \to \mathbb{Z}$ with intersection form $S_F - S_F^T$ on $H_1(F)$.

The Alexander polynomial of L is the element $\Delta_L(t)$ of $\mathbb{Z}[t, t^{-1}]$, represented by $\det(\mathcal{S}_F - t\mathcal{S}_F^T)$, up to multiplication by units $\pm t^k$.

 $\forall \zeta \in S^1$, $S_F(\zeta) = (1 - \zeta)S_F + (1 - \overline{\zeta})S_F^T$ is a Hermitian form on $H_1(F)$ whose signature and nullity are independent of F.

The Tristram-Levine signature function of L is defined by :

 $\sigma_L: S^1 \to \mathbb{Z}, \ \sigma_L(\zeta) = \text{signature}(\mathcal{S}_F(\zeta)),$

while the *nullity function of L* is defined by :

$$\eta_L: S^1 \to \mathbb{Z}, \ \eta_L(\zeta) = \operatorname{nullity}(\mathcal{S}_F(\zeta)).$$

Signature function

Here is a list of some well-known properties of σ_L , η_L , and Δ_L . 0- $\sigma_L(-1)$ is the classical Murasugi signature, denoted by $\sigma(L)$; 1- $\sigma_I(\zeta) = \sigma_I(\overline{\zeta})$ and $\eta_I(\zeta) = \eta_L(\overline{\zeta})$ for all ζ ; 2- σ_L and η_L are constant on the components of $S^1 \setminus \Delta_L^{-1}(0)$; 3- $\eta_I(\zeta) \leq m-1$ for $\zeta \in S^1 \setminus \Delta_I^{-1}(0)$; Let $\Sigma_n(L)$ be the *n*-fold cyclic branched covering of the oriented link L. 4- $|H_1(\Sigma_n(L))| = \prod_{i=1}^{n-1} |\Delta_L(\zeta_n^j)|$ with $\zeta_n = \exp(\frac{2\pi i}{n})$. 5- $\beta_1(\Sigma_n(L)) = \sum_{i=1}^{n-1} \eta_L(\zeta_n^j),$ $\Rightarrow \beta_1(\Sigma_n(L)) \ge (n-1)(\mu-1)$ if L has a Seifert surface F with μ components.

 \Rightarrow *F* is connected if $\Sigma_n(L)$ is a \mathbb{Q} -homology sphere.

Murasugi-Tristram inequality

Thm (Murasugi-Tristram Inequality)

Let $(F, \partial F) \subset (B^4, \partial B^4)$ be a locally flat, compact, oriented surface with μ components. Let $L = \partial F$ with the induced orientation and m components. If ζ is not a root of $\Delta_L(t)$, then :

$$|\sigma_L(\zeta)|+|\eta_L(\zeta)-(\mu-1)|\leq \beta_1(F)=2g(F)+(m-\mu)$$

When $\Sigma_n(L)$ is a \mathbb{Q} -homology sphere, $\eta_L(\zeta_n^j) = 0$ for $1 \le j \le n-1$.

Corollary

If $H_1(\Sigma_n(L); \mathbb{Q}) = \{0\}$ and $(F, \partial F) \subset (B^4, \partial B^4)$ is as above with oriented boundary $L = \partial F$. Then for $1 \leq j \leq n - 1$,

$$|\sigma_L(\zeta_n^j)| \le 1 - \chi_4^{top}(F)$$

(日) (周) (三) (三)

SQP links with L-spaces branched cyclic covers

Thm (B-Boyer-Gordon)

Let L be a sqp link of m components such that $\Sigma_n(L)$ is an L-space for some $n \ge 2$. Then :

(1) The roots of $\Delta_L(t)$ are contained in the open subarc $]\overline{\zeta_n}, \zeta_n[\subset S^1$ containing +1.

(2)
$$|\sigma_L(\zeta)| = 1 - \chi(L) = 2g(L) + (m-1) = \deg(\Delta_L(t))$$

for $\zeta \in subarc [\zeta_n, \overline{\zeta_n}] \subset S^1$ containing -1 .

(3) $g_4^{top}(L) = g(L).$

(4) If $\Delta_L(t)$ is not an integer multiple of $(t-1)^{2g(L)+(m-1)}$, $\exists n_3(L)$ determined by σ_L and Δ_L such that $n < n_3(L)$.

イロト イヨト イヨト イヨト

SQP Links with monic Alexander polynomials

When the reduced Alexander polynomial $\Delta_L(t)$ is monic (e.g. *L* is fibred) we get more precise restrictions :

Thm (B-Boyer-Gordon)

Suppose that L be a sqp link of m components with monic reduced Alexander polynomial $\Delta_L(t)$ which is not a power of t - 1.

(1) $\Sigma_n(K)$ is not an L-space for $n \ge 6$.

(2) If $\Sigma_n(K)$ is an L-space for $2 \le n \le 5$, then $|\sigma(L)| = 2g(L) + (m-1)$ and $\Delta_L(t)$ is a product of cyclotomic polynomials. Moreover :

(a)
$$n = 3 \Longrightarrow \Delta_L(t) = \Phi_4^k \Phi_5^m \Phi_6^p \Phi_{10}^q$$
;
(b) $n = 4 \Longrightarrow \Delta_L(t) = \Phi_5^p \Phi_6^q$;
(c) $n = 5 \Longrightarrow \Delta_L(t) = \Phi_6^p$.

SQP Knots with monic Alexander polynomials

For the case of knots we get the following restrictions :

Corollary

Suppose that K is a sqp knot with monic Alexander polynomial.

(1)
$$\Sigma_n(K)$$
 is not an L-space for $n \ge 6$.

(2) If $\Sigma_n(K)$ is an L-space for $2 \le n \le 5$, then $|\sigma(K)| = 2g(K)$

and $\Delta_{\mathcal{K}}(t)$ is a product of cyclotomic polynomials. Moreover :

(a)
$$n = 3 \Longrightarrow \Delta_{\mathcal{K}}(t) = \Phi_6^n \Phi_{10}^m$$
;

(b)
$$n \in \{4,5\} \Longrightarrow \Delta_{\mathcal{K}}(t) = \Phi_6^n$$
.

SQP knots with monic Alexander polynomials

The result is sharp : a torus knot K is fibred and **sqp**.

Moreover $\Sigma_n(K)$ is an L-space if and only if :

 $\mathbf{n} = \mathbf{2}$ and K is the (2, k), (3, 4), or (3, 5) torus knot. In each case, $\Delta_{K}(t)$ is a non-trivial product of cyclotomics;

 $\mathbf{n} = \mathbf{3}$ and K is a (2,3) or (2,5) torus knot. In the first case, $\Delta_K(t) = \Phi_6$ while in the the second case, $\Delta_K(t) = \Phi_{10}(t)$;

 $\mathbf{n} = \mathbf{5}$ and K is a (2,3) torus knot. In this case, $\Delta_K(t) = \Phi_6$.

Filip Misev constructed an infinite family of hyperbolic, fibred, sqp knots with Alexander polynomial Φ_{10} and maximal signature.

L-space knots with L-space branched covers

If K is an L-space knot, the known restrictions on Δ_K imply that it is either Φ_6 or Φ_{10} when $n \in \{3, 4, 5\}$.

Corollary

If K is an L-space knot such that $\Sigma_n(K)$ is an L-space, then $n \leq 5$. Moreover,

(1) if
$$n = 4, 5 \Longrightarrow \Delta_{K}(t) = \Phi_{6}$$
 and K is the (2,3) torus knot

(2) if
$$n = 3 \Longrightarrow K$$
 is either the (2,3) or $\Delta_K(t) = \Phi_{10}(t)$.

We expect K to be the (2,3) or (2,5) torus knot in the case n = 3.

If $\Delta_{\mathcal{K}}(t) = \Phi_{10}(t)$, then $\Sigma_3(\mathcal{K})$ is a \mathbb{Z} -homology 3-sphere.

 $\Sigma_3(K)$ L-space would imply that K is the (2,5) torus knot if the O-S conjecture is true.

(日) (周) (三) (三)

Sketch of proof for K sqp knot

 $K = C \cap \partial B^4$, C smooth holomorphic curve transverse to $\partial B^4 = S^3$ $F = C \cap B^4$ and $\Sigma_n(F) \to B^4$ the n-fold cyclic cover branched over F $\Sigma_n(F)$ is a Stein 4-manifold with strictly pseudo-convex boundary $\Sigma_n(K)$ Assume $\Sigma_n(K) = \partial \Sigma_n(F)$ is an L-space. $H_1(\Sigma_n(K), \mathbb{Q}) = \{0\} \Rightarrow (H_2(\Sigma_n(F); \mathbb{C}), \cdot) \text{ non-singular intersection form.}$ $\Sigma_n(K)$ an L-space $\Rightarrow (H_2(\Sigma_n(F); \mathbb{C}), \cdot)$ negative definite [Ozsváth-Szabó] $\Rightarrow 2g(K) \ge 2g_{A}^{top}(K) \ge |\sigma(\zeta_{n})| = \beta_{2}(\Sigma_{n}(F)) \ge 2g(K).$ So $2g(K) = 2g_{4}^{top}(K) = |\sigma(\zeta_{n})|.$

Sketch of proof for K sqp knot $\text{Degree}(\Delta_{K}) \leq 2g(K) = |\sigma(\zeta_{n})| \Rightarrow \Delta_{K}^{-1}(0) \subset \text{subarc }]\overline{\zeta_{n}}, \zeta_{n}[\subset S^{1}$ containing 1.

 $\Rightarrow |\sigma(\zeta)| = 2g(K) \text{ if } \zeta \in \text{the closed subarc } [\zeta_n, \overline{\zeta_n}] \subset S^1 \text{ containing } -1.$ Let $n_3(K)$ be the largest integer m such that $\Delta_K^{-1}(0) \subset]\overline{\zeta_m}, \zeta_m[\subset S^1.$ Then $n \leq n_3(K)$.

If $\Delta_{\mathcal{K}}$ is monic, Kroneckers thm $\Rightarrow \Delta_{\mathcal{K}}$ product of cyclotomic polynomials. For $n \ge 6$ and $a \ge 2$, the cyclotomic polynomial Φ_a has a root in $[\zeta_n, \overline{\zeta_n}] \subset S^1$.

Thus, $n \leq 5$.

Case-by-case analysis when n = 3, 4, 5, yields the listed restrictions on Δ_K .

Ada

Satellite knots

Next we consider **sqp** satellite knots.

Proposition

Let K be a sqp satellite knot with non-trivial companion C and pattern P of winding number w.

Let K_1 be the knot whose exterior is obtained from that of K by pinching the exterior of C to a solid torus.

If $\Sigma_n(K)$ is an L-space for some $n \ge 2$ then |w| = 0, 1. Moreover :

(1) If
$$|w| = 1$$
, then $|\sigma(C)| = 2g(C)$ and $|\sigma(K_1)| = 2g(K_1)$.

(2) If |w| = 0, then $g(K_1) = g(K)$.

Case (2) does not occur when K is a fibred sqp satellite knot.

(日) (周) (三) (三)

Proof

 $g(K) > |w|g(C) + g(K_1)$ (H. Schubert) • $\sigma(K) = \sigma(C) + \sigma(K_1)$ if |w| is odd; • $\sigma(K) = \sigma(K_1)$ if |w| is even (Y. Shinohara). K is sqp and $\Sigma_n(K)$ is an L-space for some $n \ge 2 \Rightarrow$ $|\sigma(K)| = 2g(K) > 2|w|g(C) + 2g(K_1) > |w||\sigma(C)| + |\sigma(K_1)| > |\sigma(K)|$ \Rightarrow this sequence of inequalities is a sequence of equalities. $w \neq 0 \Rightarrow |w| = 1$, $|\sigma(C)| = 2g(C)$ and $|\sigma(K_1)| = 2g(K_1)$ $w = 0 \Rightarrow 2g(K_1) < 2g(K) = |\sigma(K)| = |\sigma(K_1)| < 2g(K_1)$ $\Rightarrow g(K_1) = g(K).$

Satellite knots

K. Baker and K. Motegi showed that satellite L-space knots can be expressed as a satellite knot where the pattern is a braid

Corollary

For a satellite L-space knot $\Sigma_n(K)$ is never an L-space for $n \ge 2$.

The following conjecture would imply that the only L-space knots for which some $\Sigma_n(K)$ can be an L-space are iterated torus knots.

Conjecture (E. Li and Y. Ni)

If K is an L-space knot and each root of its Alexander polynomial lies on the unit circle, then K is an iterated torus knot.

In this case K must be a torus knot by the corollary and thus a (2, k), (3, 4) or (3, 5) torus knot.

- 4 同 6 4 日 6 4 日 6

Simply laced arborescent links

Conjecture

If L is a prime, fibred, strongly quasipositive link for which some $\Sigma_n(L)$ is an L-space, then L is simply laced arborescent.

The boundary $L(\Gamma)$ of the plumbing of positive Hopf bands according to one of the trees $\Gamma = A_m (m \ge 1)$, $D_m (m \ge 4)$, E_6, E_7, E_8 is called *simply laced arborescent* :

(i)
$$L(A_m) = T(2, m + 1)$$

(ii) $L(D_m) = P(-2, 2, m - 2)$
(iii) $L(E_6) = P(-2, 3, 3) = T(3, 4)$
(iv) $L(E_7) = P(-2, 3, 4)$
(v) $L(E_8) = P(-2, 3, 5) = T(3, 5)$

T(p,q) is the (p,q) torus link and P(p,q,r) the (p,q,r) pretzel link. For such a link *L*, $\pi_1(\Sigma_2(L))$ is finite and so $\Sigma_2(L)$ is a L-space.

Quasipositive braids

Thm (Rudolph, B-Orevkov) A link $L \subset S^3$ is : $\mathbf{qp} \iff L = \hat{\beta}$ for some $\beta = \prod_{i=1}^{k} w_{i\sigma_j(i)} w_i^{-1} \in B_n, n \ge 1$ $\mathbf{sqp} \iff L = \hat{\beta}$ for some $\beta = \prod_{i=1}^{k} w_{i\sigma_j(i)} w_i^{-1} \in B_n, n \ge 1$, where $w_i = \sigma_p \sigma_{p+1} \cdots \sigma_{j(i)-1}, p < j(i)$.

Corollary

If
$$L = \hat{\beta}$$
 is **qp**, then $\chi_4(L) = n - k$

If
$$L = \hat{\beta}$$
 is sqp, then $\chi(L) = n - k = \chi_4(L)$

イロト イヨト イヨト

BKL-braids

Birman-Ko-Lee introduced a presentation for the braid group B_n with generators the strongly quasipositive braids a_{rs} , $1 \le r < s \le n$, given by

$$\mathbf{a}_{rs} = (\sigma_r \sigma_{r+1} \dots \sigma_{s-2}) \sigma_{s-1} (\sigma_r \sigma_{r+1} \dots \sigma_{s-2})^{-1}$$
(1)

A braid in B_n is called *BKL-positive* if it can be expressed as a word in positive powers of the generators a_{rs} .

Kanasawa-2019

BKL- positive braids

BKL-positive elements in B_n coincide with strongly quasipositive *n*-braids.

The dual Garside element $\delta_n = \sigma_1 \sigma_2 \dots \sigma_{n-1} \in B_n$ plays an important role.

We call the BKL-exponent of a strongly quasipositive link L the integer

$$k(L) = \max\{k : L = \widehat{\delta_n^k P}, n \ge 2, k \ge 0 \text{ and } P \in B_n \text{ is BKL-positive}\}$$

One shows that $k(L) < \infty$. Moreover $k(L) \ge 2$ when L is simply laced arborescent.

Thm (B-Boyer-Gordon)

Let L be a prime sqp link with BKL-exponent $k(L) \ge 2$. Then $\Sigma_n(L)$ is an L-space for some $n \ge 2$ if and only if L is simply laced arborescent.

イロト 不得下 イヨト イヨト 二日

BKL- positive braids

A sqp link L with $k(L) \ge 1$ is fibred [Banfield]

A link L of m components is said to be *definite* if the signature is maximal :

$$|\sigma(L)| = 2g(L) + (m-1)$$

A sqp link L for which some $\Sigma_n(L)$ is an L-space is definite,

Hence the Theorem follows from the following characterisation of simply laced arborescent links :

Thm (B-Boyer-Gordon) Let L be a prime sqp link. Then L is simply laced arborescent if and only if it is definite and $k(L) \ge 2$.

BKL- positive braids

The condition $k(L) \ge 2$ cannot be relaxed : there are prime **sqp** definite links with k(L) = 1.

The simply laced arborescent links are all definite positive braid links.

A key ingredient for the proof is the following result :

Thm (Baader)

A prime positive braid link is simply laced arborescent if and only if it is definite.

Baader's theorem reduces the proof to the following result :

Thm (B-Boyer-Gordon)

If the closure of a BKL-positive word $\delta_n^2 P \in B_n$, $n \ge 3$, is a definite link, then $\delta_n^2 P$ is conjugate to a positive braid.