Strongly quasipositive links, cyclic branched covers and L-spaces

Topology and Geometry of Low-dimensional Manifolds Kanasawa June 2019

Joint work with Steve Boyer and Cameron Gordon

∽≏∩

.

Heegaard Floer theory is a homology package of 3-manifold invariants developped by Ozsváth and Szabó which is relatively powerful in distinguishing manifolds from each other.

The simplest version of these invariants come in the form of \mathbb{Z}_2 -graded abelian groups $\hat{H}F(\hat{M})$, whose. Euler characteristic verifies :

$$
\chi(\widehat{HF}(M))=|H_1(M;\mathbb{Z})|
$$

L-spaces are the class of rational homology spheres M for which the Heegaard Floer homology is as simple as possible, which means that :

$$
\dim_{\mathbb{Z}_2} \widehat{HF(M)} = |H_1(M;Z)|.
$$

Exemples of L-spaces include S^3 , the Lens saces, and more generally all manifolds admitting elliptic geometry.

 QQ

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

The 2-fold branched covering of any alternating knots or links is an L-space (Ozsváth-Szabó), providing infinitly many examples of hyperbolic L-spaces.

Conjecture (Boyer-Gordon-Watson)

For a closed, connected, orientable, irreducible 3-manifold M the following three properties are equivalent :

- **1** M is not an L-space;
- **2** *M* carries a co-oriented taut foliation:
- ³ M has a left-orderable fundamental group.

If M carries a co-orientable taut foliation then it is not an L-space [Ozsváth- Szábo].

The conjecture is true for a graph manifolds [Hanselman-Rasmussen-Rasmussen-Watson].

← ロ → → ← 何 →

 Ω

Here is the statement of a Heegaard-Floer version of Poincaré conjecture, due to Ozsváth and Szábo.

Conjecture (O-Z)

The sphere $S³$ and the Poincaré sphere are the only prime integer homology sphere L-spaces.

The conjecture holds when M is obtained by surgery on a knot in S^3 .

It is widely open for n-fold cyclic covers of S^3 branched over a knot, even for $n = 2$.

Conjecture (O-Z for cyclic branched covers)

An L-space integer homology sphere is a n-fold cyclic cover of $S³$ branched over a non trivial prime knot K, if and only if $n = 2, 3$ or 5 and K is the $(3, 5), (2, 5)$ or $(2, 3)$ torus knot.

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Question

Which knots or links in $S³$ have L-spaces as n-fold cyclic branched coverings ?

We will address this question for the class of strongly quasipositive links.

A link L is *quasipositive* (qp) if there is a smooth holomorphic curve $C \subset \mathbb{C}^2$ which is transverse to $S^3 = \partial B^4$ such that $L = C \cap S^3$.

L is strongly quasipositive (sqp) if there is a smooth holomorphic curve C as above such that $L = C \cap S^3$ and $F = C \cap B^4$ can be isotoped (rel L) into S^3 .

A link is positive if it has a diagram all of whose crossings are positive.

L-space knots

L-space knots are knots producing L-spaces by Dehn surgery.

They are sqp and fibred [O-Z, Y. Ni, M. Hedden]. Torus knots are L-space knots.

Question (Allison Moore)

If K is a hyperbolic L-space knot, is it true that $\Sigma_2(K)$ is not an L-space?

Here is a generalisation of A. Moore's Question.

Conjecture

If K is a prime fibred sqp prime for which some $\Sigma_n(K)$ is an L-space, then K is a $(2, k)$, $(3, 4)$, or $(3, 5)$ torus knot.

This can be shown to be true for example for :

- prime fibred alternating, or Montesinos, or special arborescent, sqp knots,
- positive closed braids (by S. Baader)

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Genera

All links $L \subset S^3$ are oriented and considered up to mirror image.

Convention : L is a sqp or a qp link if either L or its mirror image has this property.

A Seifert surface for L is an oriented surface with no closed components whose oriented boundary is L.

For a link $L \subset S^3$ we associate 3 different genera :

-The Seifert genus $g(L)$ = the minimal genus of a Seifert surface for L.

-The slice genus $g_4(L)$ = the minimal genus of a smooth properly embedded surface bounding L in B^4 .

-The (topologically) locally flat 4-ball genus g_4^{top} $\mathcal{L}_4^{top}(L) =$ the minimal genus of a locally flat properly embedded surface bounding L in B^4 .

The following inequalities hold : g_4^{top} $\mathcal{L}_4^{top}(L) \leq \mathcal{L}_4(L) \leq \mathcal{L}_4(L)$

KOD KARD KED KED B YOUR

Quasipositivity

Thm (Kronheimer-Mrowka)

Let $L = C \cap S^3$ be qp with $F = C \cap B^4$ a piece of holomorphic curve :

 $\chi(F) = \max\{\chi(F'): F' \text{ a smooth slice surface for } L\} = \chi_{4}(L)$

Hence if L is a knot K, $g_4(K) = g(F)$

Moreover if L is an sqp link with F isotopic (rel L) into S^3 , then :

 $\chi_4(K) = \chi(F) = \chi(L).$

 QQ

→ (御)> → 君)> → 君)>

Seifert surface

Each Seifert surface F of L determines a bilinear Seifert form $\mathcal{S}_F: H_1(F) \times H_1(F) \to \mathbb{Z}$ with intersection form $\mathcal{S}_F - \mathcal{S}_F^\mathcal{T}$ on $H_1(F)$.

The *Alexander polynomial of L* is the element $\Delta_L(t)$ of $\mathbb{Z}[t,t^{-1}],$ represented by $\det(\mathcal{S}_{\mathcal{F}} - t\mathcal{S}^{\mathcal{T}}_{\mathcal{F}})$, up to multiplication by units $\pm t^k$.

 $\forall \zeta \in \mathcal{S}^1$, $\mathcal{S}_\mathcal{F}(\zeta) = (1-\zeta)\mathcal{S}_\mathcal{F} + (1-\bar{\zeta})\mathcal{S}_\mathcal{F}^{\mathcal{T}}$ is a Hermitian form on $H_1(\mathcal{F})$ whose signature and nullity are independent of F .

The Tristram-Levine signature function of L is defined by :

 $\sigma_L: \mathcal{S}^1 \to \mathbb{Z}, \; \sigma_L(\zeta) = \mathsf{signature}(\mathcal{S}_{\mathcal{F}}(\zeta)),$

while the *nullity function of L* is defined by :

$$
\eta_L: S^1 \to \mathbb{Z}, \ \eta_L(\zeta) = \text{nullity}(\mathcal{S}_F(\zeta)).
$$

KOD KARD KED KED E VAN

Signature function

Here is a list of some well-known properties of σ_L , η_L , and Δ_L . 0- $σ_L(-1)$ is the classical Murasugi signature, denoted by $σ(L)$; 1- $\sigma_L(\zeta)=\sigma_L(\bar{\zeta})$ and $\eta_L(\zeta)=\eta_L(\bar{\zeta})$ for all ζ ; 2- σ_L and η_L are constant on the components of $S^1\setminus \Delta_L^{-1}$ $L^{-1}(0)$; 3- $\eta_L(\zeta) \leq m-1$ for $\zeta \in S^1 \setminus \Delta_L^{-1}$ $\frac{1}{L}(0)$; Let $\Sigma_n(L)$ be the *n*-fold cyclic branched covering of the oriented link L. 4- $|H_1(\Sigma_n(L))| = \prod_{j=1}^{n-1} |\Delta_L(\zeta_n^j)|$ with $\zeta_n = \exp(\frac{2\pi i}{n})$. 5- β₁(Σ_n(L)) = $\sum_{j=1}^{n-1}$ η_L(ζ_n^j), $\Rightarrow \beta_1(\Sigma_n(L)) \ge (n-1)(\mu-1)$ if L has a Seifert surface F with μ components.

 \Rightarrow F is connected if $\Sigma_n(L)$ is a Q-homology sphere.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Murasugi-Tristram inequality

Thm (Murasugi-Tristram Inequality)

Let $(F, \partial F) \subset (B^4, \partial B^4)$ be a locally flat, compact, oriented surface with μ components. Let $L = \partial F$ with the induced orientation and m components. If ζ is not a root of $\Delta_l(t)$, then :

$$
|\sigma_L(\zeta)| + |\eta_L(\zeta) - (\mu - 1)| \leq \beta_1(F) = 2g(F) + (m - \mu)
$$

When $\Sigma_n(L)$ is a $\mathbb Q$ -homology sphere, $\eta_L(\zeta_n^j)=0$ for $1\leq j\leq n-1.$

Corollary

If $H_1(\Sigma_n(L);{\mathbb Q})=\{0\}$ and $(F,\partial F)\subset (B^4,\partial B^4)$ is as above with oriented boundary $L = \partial F$. Then for $1 \le j \le n-1$,

$$
|\sigma_L(\zeta_n^j)| \leq 1 - \chi_4^{top}(F)
$$

 Ω

イロト イ押ト イヨト イヨト

SQP links with L-spaces branched cyclic covers

Thm (B-Boyer-Gordon)

Let L be a sqp link of m components such that $\Sigma_n(L)$ is an L-space for some $n \geq 2$. Then :

 (1) The roots of $\Delta_L(t)$ are contained in the open subarc $]\bar{\zeta}_n,\zeta_n[\subset S^1]$ containing $+1$.

$$
(2) |\sigma_L(\zeta)| = 1 - \chi(L) = 2g(L) + (m-1) = \deg(\Delta_L(t))
$$

for $\zeta \in \text{subarc } [\zeta_n, \overline{\zeta_n}] \subset S^1 \text{ containing } -1.$

 (3) g_4^{top} $\iota_4^{top}(L) = g(L).$

(4) If $\Delta_L(t)$ is not an integer multiple of $(t-1)^{2g(L)+(m-1)}$,

 \exists n₃(L) determined by σ_L and Δ_L such that $n \le n_3(L)$.

 QQ

イロト イ押ト イヨト イヨト

SQP Links with monic Alexander polynomials

When the reduced Alexander polynomial $\Delta_l(t)$ is monic (e.g. L is fibred) we get more precise restrictions :

Thm (B-Boyer-Gordon)

Suppose that L be a sqp link of m components with monic reduced Alexander polynomial $\Delta_l(t)$ which is not a power of $t-1$.

(1) $\Sigma_n(K)$ is not an L-space for $n > 6$.

(2) If $\Sigma_n(K)$ is an L-space for $2 \le n \le 5$, then $|\sigma(L)| = 2g(L) + (m-1)$ and $\Delta_l(t)$ is a product of cyclotomic polynomials. Moreover :

(a)
$$
n = 3 \Longrightarrow \Delta_L(t) = \Phi_4^k \Phi_5^m \Phi_6^p \Phi_{10}^q
$$
;

(b)
$$
n = 4 \implies \Delta_L(t) = \Phi_5^p \Phi_6^q
$$
;

(c) $n = 5 \implies \Delta_L(t) = \Phi_6^p$.

SQP Knots with monic Alexander polynomials

For the case of knots we get the following restrictions :

Corollary

Suppose that K is a sqp knot with monic Alexander polynomial.

(1)
$$
\Sigma_n(K)
$$
 is not an L-space for $n \geq 6$.

(2) If $\Sigma_n(K)$ is an L-space for $2 \le n \le 5$, then $|\sigma(K)| = 2g(K)$

and $\Delta_K(t)$ is a product of cyclotomic polynomials. Moreover :

(a)
$$
n = 3 \Longrightarrow \Delta_K(t) = \Phi_6^n \Phi_{10}^m
$$
;

(b)
$$
n \in \{4, 5\} \implies \Delta_K(t) = \Phi_6^n
$$
.

つへへ

SQP knots with monic Alexander polynomials

The result is sharp : a torus knot K is fibred and sqp.

Moreover $\Sigma_n(K)$ is an L-space if and only if :

 $n = 2$ and K is the $(2, k)$, $(3, 4)$, or $(3, 5)$ torus knot. In each case, $\Delta_K(t)$ is a non-trivial product of cyclotomics;

 $n = 3$ and K is a $(2, 3)$ or $(2, 5)$ torus knot. In the first case, $\Delta_K(t) = \Phi_6$ while in the the second case, $\Delta_K(t) = \Phi_{10}(t)$;

 $n = 5$ and K is a (2,3) torus knot. In this case, $\Delta_K(t) = \Phi_6$.

Filip Misev constructed an infinite family of hyperbolic, fibred, sqp knots with Alexander polynomial Φ_{10} and **maximal** signature.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

L-space knots with L-space branched covers

If K is an L-space knot, the known restrictions on Δ_K imply that it is either Φ_6 or Φ_{10} when $n \in \{3, 4, 5\}$.

Corollary

If K is an L-space knot such that $\Sigma_n(K)$ is an L-space, then $n \leq 5$. Moreover,

(1) if
$$
n = 4, 5 \implies \Delta_K(t) = \Phi_6
$$
 and K is the (2, 3) torus knot

(2) if
$$
n = 3 \implies K
$$
 is either the (2,3) or $\Delta_K(t) = \Phi_{10}(t)$.

We expect K to be the (2,3) or (2,5) torus knot in the case $n = 3$.

If $\Delta_K(t) = \Phi_{10}(t)$, then $\Sigma_3(K)$ is a \mathbb{Z} -homology 3-sphere.

 $\Sigma_3(K)$ L-space would imply that K is the (2,5) torus knot if the O-S conjecture is true.

 QQ

イロト イ押ト イヨト イヨト

Sketch of proof for K sqp knot

 $K = C \cap \partial B^4$, C smooth holomorphic curve transverse to $\partial B^4 = S^3$ $\mathcal{F} = \mathcal{C} \cap B^4$ and $\Sigma_n(\mathcal{F}) \to B^4$ the n-fold cyclic cover branched over \mathcal{F} $\Sigma_n(F)$ is a Stein 4-manifold with strictly pseudo-convex boundary $\Sigma_n(K)$ Assume $\Sigma_n(K) = \partial \Sigma_n(F)$ is an L-space. $H_1(\Sigma_n(K),\mathbb{Q})=\{0\}\Rightarrow (H_2(\Sigma_n(F);\mathbb{C}),\cdot)$ non-singular intersection form. $\Sigma_n(K)$ an L-space \Rightarrow $(H_2(\Sigma_n(F);\mathbb{C}),\cdot)$ negative definite [Ozsváth-Szabó] $\Rightarrow 2g(K) \geq 2g_4^{top}$ $\mathcal{L}_4^{top}(K) \geq |\sigma(\zeta_n)| = \beta_2(\Sigma_n(F)) \geq 2g(K).$ So 2 $g(K)=2g_4^{top}$ $\mathcal{L}_4^{top}(K) = |\sigma(\zeta_n)|.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Sketch of proof for K sqp knot Degree $(\Delta_K) \leq 2g(K) = |\sigma(\zeta_n)| \Rightarrow \Delta_K^{-1}$ $\overline{\kappa}^{-1}(0) \subset \textsf{subarc } \,] \bar{\zeta}_n, \zeta_n[\subset S^1$ containing 1 .

 $\Rightarrow |\sigma(\zeta)| = 2g(K)$ if $\zeta \in$ the closed subarc $[\zeta_n, \bar{\zeta}_n] \subset S^1$ containing -1 . Let $n_3(K)$ be the largest integer m such that $\Delta_K^{-1}(0) \subset]\bar{\zeta_m}, \zeta_m[\subset S^1.$ Then $n \leq n_3(K)$.

If Δ_K is monic, Kroneckers thm $\Rightarrow \Delta_K$ product of cyclotomic polynomials. For $n \geq 6$ and $a \geq 2$, the cyclotomic polynomial Φ_a has a root in $[\zeta_n, \bar{\zeta}_n] \subset S^1.$

Thus, $n \leq 5$.

Case-by-case analysis when $n = 3, 4, 5$, yields the listed restrictions on Δ_K .

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경

 $\sqrt{2}$

Satellite knots

Next we consider sap satellite knots.

Proposition

Let K be a sqp satellite knot with non-trivial companion C and pattern P of winding number w.

Let K_1 be the knot whose exterior is obtained from that of K by pinching the exterior of C to a solid torus.

If $\Sigma_n(K)$ is an L-space for some $n \geq 2$ then $|w| = 0, 1$. Moreover :

(1) If
$$
|w| = 1
$$
, then $|\sigma(C)| = 2g(C)$ and $|\sigma(K_1)| = 2g(K_1)$.

(2) If $|w| = 0$, then $g(K_1) = g(K)$.

Case (2) does not occur when K is a fibred sqp satellite knot.

 Ω

Proof

 $g(K) \ge |w|g(C) + g(K_1)$ (H. Schubert) $\sigma(K) = \sigma(C) + \sigma(K_1)$ if $|w|$ is odd; $\sigma(K) = \sigma(K_1)$ if $|w|$ is even (Y. Shinohara). K is sqp and $\Sigma_n(K)$ is an L-space for some $n > 2 \Rightarrow$ $|\sigma(K)| = 2g(K) > 2|w|g(C) + 2g(K_1) > |w||\sigma(C)| + |\sigma(K_1)| > |\sigma(K)|$ \Rightarrow this sequence of inequalities is a sequence of equalities. $w \neq 0 \Rightarrow |w| = 1$, $|\sigma(C)| = 2g(C)$ and $|\sigma(K_1)| = 2g(K_1)$ $w = 0 \Rightarrow 2g(K_1) < 2g(K) = |\sigma(K)| = |\sigma(K_1)| < 2g(K_1)$ $\Rightarrow g(K_1) = g(K)$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Satellite knots

K. Baker and K. Motegi showed that satellite L-space knots can be expressed as a satellite knot where the pattern is a braid

Corollary

For a satellite L-space knot $\Sigma_n(K)$ is never an L-space for $n \geq 2$.

The following conjecture would imply that the only L-space knots for which some $\Sigma_n(K)$ can be an L-space are iterated torus knots.

Conjecture (E. Li and Y. Ni)

If K is an L-space knot and each root of its Alexander polynomial lies on the unit circle, then K is an iterated torus knot.

In this case K must be a torus knot by the corollary and thus a $(2, k)$, $(3, 4)$ or $(3, 5)$ torus knot.

 \leftarrow \Box

→ 何 ▶ → ヨ ▶ → ヨ ▶

 Ω

Simply laced arborescent links

Conjecture

If L is a prime, fibred, strongly quasipositive link for which some $\Sigma_n(L)$ is an L-space, then L is simply laced arborescent.

The boundary L(Γ) of the plumbing of positive Hopf bands according to one of the trees $\Gamma = A_m(m \ge 1)$, $D_m(m \ge 4)$, E_6, E_7, E_8 is called simply laced arborescent :

(i)
$$
L(A_m) = T(2, m + 1)
$$

\n(ii) $L(D_m) = P(-2, 2, m - 2)$
\n(iii) $L(E_6) = P(-2, 3, 3) = T(3, 4)$
\n(iv) $L(E_7) = P(-2, 3, 4)$
\n(v) $L(E_8) = P(-2, 3, 5) = T(3, 5)$

 $T(p, q)$ is the (p, q) torus link and $P(p, q, r)$ the (p, q, r) pretzel link. For such a link [L](#page-20-0), $\pi_1(\Sigma_2(L))$ [is](#page-22-0) finite and so $\Sigma_2(L)$ is [a L](#page-21-0)[-](#page-22-0)[sp](#page-0-0)[ac](#page-26-0)[e.](#page-0-0)

 Ω

Quasipositive braids

Thm (Rudolph, B-Orevkov) A link $L \subset S^3$ is : $\mathsf{qp} \Longleftrightarrow \mathsf{L} = \hat{\beta} \text{ for some } \beta = \prod_{i=1}^k \mathsf{q}$ $\prod_{i=1}^n w_{i\sigma_j(i)}w_i^{-1} \in B_n, n \geq 1$ $\mathsf{sup} \Longleftrightarrow \mathsf{L} = \hat{\beta} \text{ for some } \beta = \prod_{i=1}^k \mathsf{L}$ $\prod_{i=1}^{n} w_{i\sigma_j(i)} w_i^{-1} \in B_n, n \ge 1,$ where $w_i = \sigma_p \sigma_{p+1} \cdots \sigma_{j(i)-1}, p < j(i)$.

Corollary

If
$$
L = \hat{\beta}
$$
 is **qp**, then $\chi_4(L) = n - k$

If
$$
L = \hat{\beta}
$$
 is **sqp**, then $\chi(L) = n - k = \chi_4(L)$

 Ω

イロト イ押ト イヨト イヨト

BKL-braids

Birman-Ko-Lee introduced a presentation for the braid group B_n with generators the strongly quasipositive braids a_{rs} , $1 \le r < s \le n$, given by

$$
a_{rs} = (\sigma_r \sigma_{r+1} \dots \sigma_{s-2}) \sigma_{s-1} (\sigma_r \sigma_{r+1} \dots \sigma_{s-2})^{-1}
$$
 (1)

A braid in B_n is called BKL-positive if it can be expressed as a word in positive powers of the generators a_{rs} . QQ

[Kanasawa-2019](#page-0-0) 6 juin 2019 24 / 27

BKL- positive braids

BKL-positive elements in B_n coincide with strongly quasipositive *n*-braids.

The dual Garside element $\delta_n = \sigma_1 \sigma_2 \ldots \sigma_{n-1} \in B_n$ plays an important role.

We call the BKL -exponent of a strongly quasipositive link L the integer

$$
k(L) = \max\{k : L = \widehat{\delta_n^k P}, n \ge 2, k \ge 0 \text{ and } P \in B_n \text{ is BKL-positive}\}
$$

One shows that $k(L) < \infty$. Moreover $k(L) \geq 2$ when L is simply laced arborescent.

Thm (B-Boyer-Gordon)

Let L be a prime sqp link with BKL-exponent $k(L) \geq 2$. Then $\Sigma_n(L)$ is an L-space for some $n > 2$ if and only if L is simply laced arborescent.

 Ω

イロト イ押ト イヨト イヨト ニヨ

BKL- positive braids

.

A sqp link L with $k(L) \geq 1$ is fibred [Banfield]

A link L of m components is said to be *definite* if the signature is maximal :

$$
|\sigma(L)|=2g(L)+(m-1)
$$

A sqp link L for which some $\Sigma_n(L)$ is an L-space is definite,

Hence the Theorem follows from the following characterisation of simply laced arborescent links :

Thm (B-Boyer-Gordon) Let L be a prime sqp link. Then L is simply laced arborescent if and only if it is definite and $k(L) > 2$.

 200

BKL- positive braids

The condition $k(L) > 2$ cannot be relaxed : there are prime sqp definite links with $k(L) = 1$.

The simply laced arborescent links are all definite positive braid links.

A key ingredient for the proof is the following result :

Thm (Baader)

A prime positive braid link is simply laced arborescent if and only if it is definite.

Baader's theorem reduces the proof to the following result :

Thm (B-Boyer-Gordon)

If the closure of a BKL-positive word $\delta_n^2 P \in B_n$, $n \geq 3$, is a definite link, then $\delta_n^2 P$ is conjugate to a positive braid.

 Ω